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Abstract—A single panel of a comic book can say a lot: it
shows not only where characters currently are, but also where
they came from, what their motivations are, and what might
happen next. More generally, humans can often infer a complex
sequence of past and future events from a single snapshot image
of an intelligent agent.

Building on recent work in cognitive science, we offer a Monte
Carlo algorithm for making such inferences. Drawing a connection
to Monte Carlo path tracing in computer graphics, we borrow
ideas that help us dramatically improve upon prior work in
sample efficiency. This allows us to scale to a wide variety of
challenging inference problems with only a handful of samples.
It also suggests some degree of cognitive plausibility, and indeed
we present human subject studies showing that our algorithm
matches human intuitions in a variety of domains that previous
methods could not scale to.

I. INTRODUCTION

Hemingway’s shortest short story simply reads “For sale:
baby shoes, never worn.” There is no action in this sentence—
however, readers nonetheless infer a complex and tragic
backstory from the single static snapshot Hemingway pro-
vides. This remarkable ability comes naturally to humans: we
routinely reconstruct motives from evidence (e.g. at a crime
scene), recognize intentions from unfinished tasks (e.g. grading
incomplete homework), and enjoy artistic depictions of dynamic
action in static drawings (e.g. a Renaissance “tableau” or a
comic book panel).

How do we do it? Decades of work in both AI and cognitive
science (see Section IV) has successfully addressed the simpler
problem of inferring an agent’s goal from a trajectory of
observed actions. These methods infer P (goal | actions) ∝
P (actions | goal)P (goal), where P (actions | goal) is modeled
by comparing the observed actions to the optimal actions a
rational agent would take towards that goal.

But if we only observe a single state snapshot, this method
breaks down—there are simply no actions to condition on.
Instead, we must jointly infer not only where the agent might
be going, but also where it came from. Recently, Lopez-Brau
et al. [28, 29] performed this inference by rejection-sampling
possible paths taken by the agent. Their model’s predictions
are remarkably close to human judgements. However, rejection
sampling is extremely inefficient—it is slow even on simple
problems, and simply does not scale to more sophisticated
problems, suggesting that there is more to how humans perform
such inference.

In this paper, we propose a solution: inspired by the wealth of
Monte Carlo sampling algorithms for path tracing in computer
graphics, we consider sampling paths bidirectionally. This

leads to a dramatically more efficient sampling scheme that
scales to more sophisticated problems. Specifically, we make
the following contributions:

1) In Section II, we review how the problem is formalized
and present our Monte Carlo algorithm for sampling
approximate solutions. Our algorithm is up to 30, 000×
more efficient than prior work, and lends itself to a
natural cognitively-plausible implementation.

2) We extend prior work to support not only Markov
Decision Processes (MDPs) as in prior work, but also
on-line (classical) planning domains where possible, in
order to avoid expensive pre-computation of policies
(Section II-C).

3) Via three behavioral studies, we demonstrate that our
model’s predictions match human judgements on new,
scaled-up tasks inaccessible to prior work (Section III-B
and Appendix C).

II. PROPOSED ALGORITHM

Consider an agent who begins in some initial state s ∼
p(s) and acts rationally to reach some goal g. For now, let
us follow prior work in taking the agent’s domain to be a
Markov Decision Process (MDP), though we will later relax
this assumption. In an MDP, the goal g might be modeled as a
terminal state that the agent receives high reward for reaching.

While the agent is on its trajectory from s to g, we observe
a “snapshot” of the agent in some state x. Given only x (and
not s!), our goal is to infer p(g | x). Applying Bayes’ rule,
we have p(g | x) ∝ p(x | g)p(g). To evaluate the likelihood
p(x | g), we apply the Law of Total Probability over possible
start states s, and then again over state sequences (or “paths”)
πs:g from s to g.

p(x | g) =
∫
s

p(x | s, g)p(s | g)ds

=

∫
s

∫
πs:g

p(x | πs:g, s, g)p(πs:g | s, g)p(s)dπs:gds

(Note that p(s | g) = p(s) because we assume s and g are
independent.)

To evaluate the likelihood of a snapshot p(x | πs:g, s, g), we
apply the size principle [46, 47, 19], analogous to the generic
viewpoint assumption in computer vision [16, 1]. In this case,
the principle states that the snapshot was equally likely to
have been taken anywhere along the path, and therefore the
likelihood of a snapshot conditioned on a path is inversely
proportional to the length of the path. If δ(x ∈ π) indicates
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Fig. 1. How can we infer what an agent is trying to do, based on a snapshot of its current state?

whether path π passes through x, and |π| indicates the length
of π, then p(x | πs:g, s, g) is given by δ(x ∈ πs:g)|πs:g|−1.

To evaluate the likelihood of a path p(π | s, g), we apply
the principle of rational action: agents are likelier to take
actions that maximize their utility [14, 23]. We formalize this
intuition by saying that at each step, the agent chooses an
action with probability proportional to the softmax over its
Q-values at its current state, with some temperature β. That
is, p(x → x′ | g) ∝

∑
a exp(βQg(x, a))Tr(x, a, x′), where

Tr(x, a, x′) is the transition probability from x to x′ if action
a is taken, and p(π | g) ∝ Πtp(xt → xt+1 | g).

We now have all the ingredients we need to evaluate p(x | g).
However, to compute it exactly we would need to integrate
over all possible initial states s, and the set of paths πs:g,
which could be infinite (agents might wander for arbitrarily
long, albeit with vanishingly low probability). To approximate
the likelihood in finite time, Lopez-Brau et al. turn to Monte
Carlo sampling (Algorithm 1). They rejection-sample paths
πs:g by sampling a candidate start state s(i) ∼ p(s), simulating
a rollout of the agent to sample a path π

(i)
s:g ∼ p(π

(i)
s:g | s(i), g),

and then averaging the integrand over these samples. With
N samples, their unbiased likelihood estimator is given by
p̂(x | g) = 1

N

∑N
i=1 δ(x ∈ π

(i)
s:g)|π(i)

s:g|−1.
Unfortunately, in practice this scheme is extremely slow:

even in a 7× 7 gridworld with fewer than 49 states (only 2
of which were possible initial states), Lopez-Brau et al. report
taking over 300,000 trajectory samples per goal to perform
inference. In the rest of this section, we will describe a series of
algorithmic enhancements that allow for comparable inference
quality with just 10 samples per goal (i.e. 30, 000× fewer).
We will develop our algorithm (Alg 2) through three insights.

A. First insight: only sample paths through the observed state

Our first insight is that δ(x ∈ π) is extremely sparse—most
paths likely do not pass through x, and so most naïve path
samples contribute zero to the estimator. We would like to
only sample paths that pass through x. Any such path can
be partitioned at x into two portions, πs:x and πx:g. Let us

integrate separately over those portions.

p(x | g) =∫
s

∫
πs:x

∫
πx:g

p(πs:x | g) p(πx:g | g)
|πs:x|+ |πx:g|

p(s) dπx:g dπs:x ds

This already suggests a more efficient Monte Carlo sampling
scheme: rather than rejection-sampling paths π

(i)
s:g from s to

g, we can independently sample two paths: a “past” path π
(i)
s:x

from s to x, and a “future” path π
(i)
x:g from x to g. Any such

path is guaranteed to pass through x; no samples are wasted.
However, we now have two new problems. First, it is not

clear how to sample paths π(i)
s:x from s to x, because rollouts of

a simulated agent are unlikely to pass through x on their way
to g. We could imagine using a second planner just to chart
paths from s to x, but this would require a lot of additional
planning work. Second, we still have to sample s(i). If the
space of initial states is small (e.g. a room only has one or
two doors), then this is no issue. However, in practice this
space might be very large or even infinite. For example, if
you observe someone driving to work in the morning, their
home could be anywhere in the city. Furthermore, most of
these states might be inaccessible or otherwise implausible,
and it would be a waste of computational resources to consider
them. In the next section, we show how to solve both of these
problems by tracing paths backwards in time.

B. Second insight: sample backwards in time

Our second insight is that we can collapse the first two
integrals by jointly integrating over the domain of all paths π:x

that terminate at x, no matter where they started from. Say a
path π:x begins at π:x[0]. Then, we can rewrite our likelihood
as below.

p(x | g) =∫
π:x

∫
πx:g

p(π:x | g) p(πx:g | g)
|π:x|+ |πx:g|

p(π:x[0]) dπx:g dπ:x

This suggests that we should sample π
(i)
:x backwards through

time, starting from x. No matter how we extend this path, we
obtain a valid path from π

(i)
:x [0] to x.



An analogy to path tracers in computer graphics may be
helpful. When rendering a 3D scene, a renderer must integrate
over all paths of light that begin at a light source in the scene
and end at a pixel on the camera’s film—a problem formalized
by the rendering equation [24]. Of course, these paths may be
reflected and refracted by several surface interactions along the
way. Rather than starting at one of the millions of light sources
in the scene and tracing a ray hoping to eventually reach the
camera film, renderers instead start at the camera and trace
rays backward into the scene until they reach a light source.
Similarly, here we trace paths backwards from x into the past—
s corresponds to a light source, each action taken by the agent
corresponds to a surface interaction, and x corresponds to a
camera pixel. Indeed, our integral is analogous to the rendering
equation, bringing to our disposal the entire Monte Carlo
light transport toolbox—a toolbox the rendering community
has spent decades developing [50, 37]. The particular ideas
we borrow are importance sampling, Russian roulette path
termination [9, 5], and bidirectional path tracing [26, 51].

C. Third insight: plan on-line via incremental A-star search

One last dissatisfying aspect of this algorithm is that it
requires an expensive pre-computation of Q-functions for all
possible goals and states. It seems implausible that humans
do this, because we make judgements so quickly, even in new
domains. Thus, we extend our algorithm to classical planning
domains, where algorithms such as A-star search provide a
lightweight on-line source of information. We can compute
p(x→ x′ | g) by taking a softmax over the difference in path
costs between x and x′ to g as given by a planner: p(x→ x′ |
g) ∝

∑
a exp (β(C(x→ g)− C(x′ → g)), so that the agent

is more likely to move to states that will bring them closer to
the goal. To avoid re-planning from scratch for every evaluation
of p(xt−1 → xt | g), we run A-star backwards from the goal.
This lets us re-use intermediate computations (known distances,
evaluations of the heuristic, etc.) between queries.

III. EXPERIMENTS

To evaluate our sampling algorithm, we chose a suite of
benchmark domains from prior work.

Simple gridworld: We re-implement the 7× 7 gridworld
domain from Lopez-Brau et al. The agent seeks one of three

Fig. 2. (left) In this example of the “grid” domain, we observe an agent near
the blue gem. Even though we do not know where the agent started from, our
intuition says that the agent wants the blue gem. (right) In this example of
the “keys” domain, we observe an agent right next to the green key. Humans
infer that the agent is heading towards the green key because it wants the blue
gem. Our algorithm replicates both of these inferences with only 10 samples.

gems in the gridworld and can move north, south, east or
west. The inference task is to look at a snapshot image and
determine which gem the agent seeks. While Lopez-Brau et al.
fix two possible starting-points (“entryways”) for the agent,
we optionally relax this constraint and instead have a uniform
prior over the start state (see Figure 2).

Doors, keys, and gems (multi-stage planning): This is a
more advanced 8 × 8 gridworld, inspired by Zhi-Xuan et al.
[54]. The agent is blocked from its gem by doors, which can
only be opened if the agent is carrying the correct keys. The
inference task is to look at a snapshot image and determine
which gem the agent seeks (see Figure 2).

Word blocks (non-spatial): In this domain, the agent spells
a word out of the six letter blocks by picking and placing
them in stacks on a table. However, they are interrupted (e.g.
by a fire alarm) and have to leave the room before finishing.
The inference tasks are to look at the blocks left behind and
determine (a) which word the agent was trying to spell, and
(b) which blocks the agent touched.

A. Results

Table I shows some example inferences made by our
algorithm. With just 10 samples, our method’s posterior
inferences are near-convergent and align well with human
responses. In comparison, with 10 samples rejection sampling
typically produces extremely noisy predictions, and often
simply fails to produce any non-rejected samples at all.

Quantitatively, we report the total variation TV(x) =
1
2

∑
gi
|p̂(gi | x)− p(gi | x)| between the true posterior and

inferences made using 10 samples of both our method and
rejection sampling, averaged for 100 trials and across all of the
inference tasks in the benchmark. We take the true posterior
to be our method’s estimate with 1,000 samples. Our results
are shown in Table II. Across all domains, our algorithm
substantially outperforms rejection sampling.

B. Comparison to human judgements

We recruited N = 200 participants and collected judgements
for a variety of “snapshots” in each domain. Our model predicts
human intuitions quite well (see Table I, right). Showing that
findings of previous work continue to hold in domains that
previous algorithms could not scale to.

IV. RELATED WORK

Human social cognition and “theory of mind” are well-
modeled by Bayesian inverse planning [7, 22, 8, 25, 53,
49, 32, 34, 54], inferring an agent’s goals from its observed
actions. Lopez-Brau et al. [28, 29], building on past work
[43, 18, 27, 36, 21], ask how people make inferences about
agents from static evidence. We extend their work in this paper.

Our work provides a method for plan recognition [39, 40,
44, 12] from a single snapshot. Relatedly, Shah et al. [42]
recently propose inverse reinforcement learning [33, 4, 55]
from a single state. We build on their work in three ways:
(1) Their work assumes paths of a fixed length, whereas we
integrate over trajectories of all possible lengths. (2) We do



TABLE I
QUALITATIVE COMPARISON OF INFERENCE ALGORITHMS. (LEFT) FOR “GRIDWORLD” AND “KEYS,” CELLS ARE COLORED BASED ON THE POSTERIOR

DISTRIBUTION OVER GOALS IF THE AGENT IS OBSERVED IN THAT CELL. CELLS MARKED × HAD ALL SAMPLES REJECTED. GRAY CELLS WERE EXCLUDED
FROM ANALYSIS BECAUSE IT WOULD BE IRRATIONAL FOR THE AGENT TO BE THERE FOR ANY GOAL. FOR “BLOCKS,” EACH BLOCK IS COLORED

ACCORDING TO INFERRED PROBABILITY OF IT HAVING BEEN TOUCHED (RED HIGH, BLUE LOW). WE SHOW RESULTS FOR 10 SAMPLES AND 1,000 (1K)
SAMPLES, COMPARING REJECTION SAMPLING, OUR METHOD, AND HUMAN SUBJECTS. WE PRODUCE NEAR-CONVERGENT INFERENCES WITH ONLY 10
SAMPLES, AND OUR METHOD QUALITATIVELY MATCHES HUMANS. IN COMPARISON, REJECTION SAMPLING IS OFTEN UNABLE TO MAKE ANY INFERENCE

WITH 10 SAMPLES, AND SOMETIMES EVEN FAILS WITH 1,000 SAMPLES. WHEN IT SUCCEEDS, ITS PREDICTIONS ARE HIGH-VARIANCE AND
OVERCONFIDENT. (RIGHT) OUR MODEL INFERENCES MATCH HUMAN RESPONSES ON ALL THREE TASKS.

Task Rejection (10) Rejection (1k) Ours (10) Ours (1k) Humans

Grid
(two doors,
as in
[28])

Previously
shown to be
matched by
model [29]

Grid
(start
any-
where)

Keys
(holding
no key)

Keys
(holding
green
key)

Blocks 1
(spelling
“DIG-
GER”)

(all samples
rejected)

Blocks 2
(spelling
“RIGGED”)

(all samples
rejected)

(all samples
rejected)

TABLE II
QUANTITATIVE COMPARISON OF INFERENCE ALGORITHMS. WE SHOW THE
TOTAL VARIATION DISTANCE (TV) OF A 10-SAMPLE POSTERIOR ESTIMATE,

AVERAGED OVER 100 TRIALS. LOWER IS BETTER.

Benchmark Rejection TV Ours TV

Grid (two doors, as in [28]) 0.063 0.0257
Grid (starting anywhere) 0.159 0.0538
Keys (observed holding no key) 0.818 0.215
Keys (observed holding pink key) 0.777 0.314
Keys (observed holding green key) 0.762 0.239
Blocks 0.985 0.358

not assume the snapshot was taken at the end of the agent’s
journey. (3) Our method scales to larger domains because we

do not integrate exhaustively over trajectories.

V. LIMITATIONS AND FUTURE WORK

Sampling over goals: We currently compute posteriors by
enumeration over all goals, which takes linear time in the size
of the goal space. We hope to scale to larger or continuous
goal spaces via pseudo-marginal Monte Carlo methods [3].

Cognitive plausibility: Our method’s sample efficiency
suggests that it may resemble how humans do this task [52].
Following previous work [17], we hope to use eye-tracking to
compare humans to our algorithm. In the language of Marr
[30], this would allow us to go beyond a computational account
and towards an algorithmic account.



Algorithm 1 Rejection sampling, as in prior work. Compare
to our proposed method, Algorithm 2.
Require: x, the agent’s current state (e.g. position in grid)

g, the hypothesized goal
P (s→ s′ | g), the probability the agent will move
to s′ from s
Pstart(s), the prior over the agent starting at s

1: t← 0, n← 0, sample xcurrent with probability ∝ Pstart(·)
2: while xcurrent is not an end state do
3: if xcurrent = x then
4: n← n+ 1
5: sample xnext w.p. pchoice ∝ P (xcurrent → · | g)
6: xcurrent ← xnext and t← t+ 1
7: return n / ℓ

Algorithm 2 Our bidirectional likelihood sampler
Require: x, g, P (s→ s′ | g), Pstart(s) as in Algorithm 1

α, the strength of importance sampling
d, an average termination depth for Russian roulette
C, an optional bidirectional path tracing cache (see
Algorithm 3)

1: ℓ← 0
2: tnext ← 0, xcurrent ← x ▷ Sample forward
3: while xcurrent is not an end state do
4: sample successor state xnext with probability pchoice ∝

P (xcurrent → · | g)
5: xcurrent ← xnext and tnext ← tnext + 1
6: tprev ← 1, xcurrent ← x, pπ ← 1 ▷ Sample backwards
7: while true do
8: if xcurrent ∈ C then ▷ Check BDPT cache
9: sample (tcache, w) from C[xcurrent]

10: return w · (#C[xcurrent]/#C) · pπ/(tcache + tprev +
tnext)

11: if flip() < 1/d then ▷ Russian roulette termination
12: return Pstart(xcurrent) · pπ/(tprev + tnext) · 1/(1/d)
13: pπ ← pπ / (1− 1/d) ▷ Russian roulette weight
14: sample predecessor state xprev with probability pchoice ∝

exp(α · P (· → xcurrent | g))
15: pπ ← pπ · P (xprev → xcurrent | g) / pchoice
16: xcurrent ← xprev and tprev ← tprev + 1
17: return ℓ

Beyond inference: Artists have long represented dynamic
action in static scenes [31]. We hope to consider the inverse
problem of designing evocative scenes by optimizing over
inference [10, 11, 15].

VI. CONCLUSION

We offered an algorithm for making inferences about the past
and future of an intelligent agent based on an observed present.
Building on prior work from cognitive science and AI, and
drawing inspiration from Monte Carlo rendering, we presented
a sample-efficient algorithm and showed that it matches human
intuitions on a variety of challenging tasks.

Algorithm 3 Grow the bidirectional path tracer’s cache (to be
called repeatedly)
Require: g, P (s→ s′ | g), Pstart(s) as in Algorithm 1, d as

in Algorithm 2, and C, a cache
1: t← 0, w ← 1, sample xcurrent with prob. ∝ Pstart(·)
2: while xcurrent is not an end state do
3: add (t, d · w) to C[xcurrent]
4: sample xnext with prob. ∝ P (xcurrent → · | g)
5: if flip() < 1/d then
6: break
7: w ← w / (1− 1/d)
8: xcurrent ← xnext and t← t+ 1
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APPENDIX

A. Experimental design

For each of our experiments reported in Section III-B, we
recruited N = 200 participants from Prolific [35]. Participants
were paid $15 per hour ($1.25 total for blocks and grid domains,
and $2.00 for the keys domain), and our experiments were
conducted with IRB approval.

Participants were first familiarized with the environment,
through both text instructions and a sample video of an agent
performing the task in the domain. Then, they were told that
their objective was to infer the agent’s goal from a single
snapshot. They answered several questions to check their
comprehension of both the domain and the task they were
asked to perform, and were not allowed to continue unless
they answered the comprehension questions correctly. The full
experimental design is available in HTML format upon request.
No data was excluded from our analyses.

B. Numerical test of correctness

Programming sophisticated importance sampling routines is
a challenging and bug-prone engineering effort [13, 2, 37]. To
test that our algorithm is unbiased, i.e. that it produces correct
likelihoods in expectation, we compared likelihoods computed
by rejection sampling and our sampler using converged
estimates (25,000 samples each). For this experiment we used
a uniform 4 × 4 grid-world, with the prior on start states
being uniform along the first row (x = 0) and the goal
being the far corner (3, 3). The results of this experiment are
shown in Figure 3. Our estimator has a dramatically different
implementation than rejection sampling (compare Algorithms 1
and 2). However, the computed likelihoods are indistinguishable
at every cell in the grid, even in “corner-case” cells such as
the goal cell itself. This provides a strong check that our
algorithm and its implementation are both indeed correct.

C. Additional domains

We used our algorithm to perform inferences in three
additional domains. The purpose of these domains is to show
the remarkable flexibility of our method: how it can make
interesting inferences in a wide variety of settings. Though
we did not collect human subject data for these domains, we
show results for cases where the inference task is relatively
straightforward.

1) Food trucks (joint belief/desire inference): The food
trucks domain, taken from the cognitive science literature [8],
is a Partially Observable Markov Decision Process (POMDP).
It consists of a 5× 10 gridworld with an opaque wall in the
middle. A hungry graduate student wakes up at home (one side
of the wall) and wishes to eat at a food truck. There are two
parking spots where food trucks usually park, and three kinds
of food trucks that could be parked at each of those spots:
Korean, Lebanese, and Mexican (K, L, and M). The graduate
student might have preferences among the cuisines, but might
also be uncertain about which trucks are parked at each spot
today. Thus, they might engage in information-seeking behavior
by looking behind the opaque wall, and then choosing a food

truck to walk to based on their preferences. The inference
task is to determine (a) the student’s preferences over food
trucks, and (b) the student’s (current) belief state about
which truck is at each parking spot.

Using this domain, Baker et al.’s inverse planning model was
able to jointly infer the student’s beliefs and desires from an
observed trajectory; those inferences closely matched responses
from human subjects. Here, we perform the same type of
inference, but from a single observed snapshot.

For example, in the example in Figure 4, the student is
observed moving south next to the wall. A Korean food truck
is parked in the southwest parking spot, and a Lebanese food
truck is parked in the northeast spot. Seeing this scene, a
reasonable inference is that the student went looking around
the wall to see if the Mexican food truck (their favorite) was
parked on the other side. Seeing that it was Lebanese food
instead, the student turns around and makes peace with the
nearby Korean food. Indeed, our model captures this inference:
in the joint posterior distribution over both beliefs and desires,
our model is confident that the student now knows that the
northeast truck has Lebanese food, and furthermore that the
student’s favorite food is Mexican.

A more sophisticated inference emerges if the student is
observed moving north instead of south (Figure 5). Now, a
reasonable inference is that the student dislikes Korean food,
and is going around the wall to check what is at the other
truck. The model captures this: it favors the hypothesis that
the student is unsure what is at the northeast truck, and also
places high weight on Korean being the least favorite food
option.

However, as is visible on the right half of the heatmap,
the model also places some weight on the possibility that the
student knows that there is Lebanese food and prefers it, or
that the student (mistakenly) believes there is Mexican food
and prefers that.

2) Heist (multi-agent domain): In this multi-agent domain
inspired by classic stimuli in cognitive science [6, 45, 20], two
agents—blue and pink—occupy a 7×7 gridworld representing
an art museum. One of the agents is a “thief,” whose objective
is to escape the museum by reaching the exit, and the other
is a “guard,” whose objective is to catch the thief. There are
four doors in the room, only one of which is an exit, and the
rest of which are dead ends. Both agents know which door
is the exit, but this information is not visible to the observer
(all doors are rendered identically). The inference tasks are
to look at a snapshot of the two agents and jointly infer
(a) which agent is the thief and which is the guard, and
(b) which door is the exit.

In the example in Figure 6, it is clear from the snapshot that
the blue agent is the guard and is chasing the pink agent, the
thief, to the bottom-right corner. The model reproduces this
inference, though also acknowledges the possibility that the
thief might actually be heading onward past the bottom-right,
to the bottom-left corner instead.

The next two examples (Figure 7) are ambiguous cases: the
two agents are in symmetric positions, so it is unclear who
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Our sampler is unbiased and precisely matches rejection sampling

Fig. 3. Our sampler’s likelihoods precisely match rejection sampling, with and without bidirectional path tracing, giving a strong numerical check of our
method’s correctness (Appendix B).

Fig. 4. The student is observed heading south around the wall. A rational inference is that the student started at home, and went around the wall to check
what the far food truck was. Seeing that it was Lebanese and not Mexican (their favorite), the student disappointedly turns around to make peace with the
nearby Korean food. As shown on the heatmap to the right, our model captures this joint belief-desire inference, predicting that the student now
knows what is at both trucks, and reconstructing the student’s likely preference ordering over the three cuisines. Note: the belief label “K \ ?” means
that the student thinks the south-west parking spot has a Korean food truck parked, but is unsure about the north-east parking spot. See Appendix C1.

Fig. 5. Here, the student is observed going north instead of south. A more sophisticated inference emerges, showing that the student is likely uncertain about
which truck is parked behind the wall. See Appendix C1
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Fig. 6. Two agents are observed by a security camera in an art museum.
Who is the guard, who is the thief, and where is the thief trying to escape to?
Our model predicts that the guard is the blue agent, the thief is the pink
agent, and that the exit is in the bottom right. See Appendix C2.
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Fig. 7. In these examples, it is unclear who the guard and thief are—however,
it is clear where the exit is. The model reproduces this uncertainty as
desired. See Appendix C2.

is who. Here, the model can determine with high confidence
where the exit is, but remains uncertain about who is the thief
and who is the guard.

Finally, in the last example (Figure 8), it is unclear whether
a blue guard is blocking a pink thief from heading to the
top-right corner, or whether a pink guard is blocking the blue
thief from heading the the bottom-right corner. Indeed, the
model reproduces this ambiguity.

3) Cart-pole (continuous state space with physical dynam-
ics): The cart-pole domain is a classic problem in reinforcement
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Fig. 8. In this example, it is unclear whether a blue guard is blocking a
pink thief from heading to the top-right corner, or whether a pink guard is
blocking the blue thief from heading the the bottom-right corner. The model
reproduces this joint uncertainty as desired. See Appendix C2.

learning and optimal control. The goal is to balance a pole in
an upright position, by moving the cart left or right. The state
space of this domain consists of four continuous numbers: the
horizontal position of the cart and its velocity, and the angle
of the pole along with its angular velocity. The inference
tasks are to look at a snapshot image—which only shows
the cart position and the pole angle—and determine the
velocity of the cart and the angular velocity of the pole.
Note that rejection sampling cannot solve this task because the
probability of a randomly-sampled trace passing through the
observed state is zero.

We use an off-the-shelf pre-trained Proximal Policy Opti-
mization (PPO) controller [41] from stable-baselines3 [38] to
compute a probability distribution over actions. Inference in
this domain is complicated by the fact that computing backward
dynamics in physical simulation is challenging and often ill-
posed. While previous work has proposed analytic approaches
[48], we instead train a neural network to approximate the
reverse physical dynamics. We place a unit Gaussian prior over
the velocities, and use a Von-Mises distribution as a prior over
the initial pole angle. We infer the velocities of the system by
sampling candidate pairs of cart and pole velocities (stratified in
an 11×11 grid) and computing likelihoods using our algorithm.

The inferred posteriors are intuitive and track the relative
stability of the position in each snapshot (Figure 9). For
example, in part (a), the pole has almost completely fallen over,
and so our method infers that the pole has a large negative
angular velocity, and is falling fast towards the ground. At the
same time, it infers that the cart is moving fast to the left, in
an attempt to re-balance. In comparison, for part (f), the pole
is nearly upright, so the model predicts that the pole is not
rotating, and that the cart might be moving left or right to keep
the pole balanced.



Fig. 9. In each pair, the left image shows the cart-pole snapshot given to the algorithm, and the overlaid arrows summarize the model’s predictions about how
the system might evolve. The right heatmap shows our model’s full joint distribution of inferred cart velocity (positive means moving to the right) and pole
angular velocity (positive means clockwise), and the white stars mark posterior expectations. When the pole is near-horizontal, our algorithm infers that
the pole is falling, and the cart is moving left to re-balance. When the pole is near-vertical, the algorithm infers that the pole is stationary, and the
cart is making minor adjustments to keep the pole balanced.
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