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Abstract—We propose AToM-Bot, a novel task generation
and execution framework for proactive robot-human interaction,
which leverages the human mental and physical state inference
capabilities of the Vision Language Model (VLM) prompted
by the Affective Theory of Mind (AToM). Without requiring
explicit commands by humans, AToM-Bot proactively generates
and follows feasible tasks to improve general human well-being.
When around humans, AToM-Bot first detects current human
needs based on inferred human states and observations of the
surrounding environment. It then generates tasks to fulfill these
needs, taking into account its embodied constraints. We designed
16 daily life scenarios spanning 4 common scenes and tasked
the same visual stimulus to 59 human subjects and our robot.
We used the similarity between human open-ended answers and
robot output, and the human satisfaction scores to metric robot
performance. AToM-Bot received high human evaluations in need
detection (6.42/7, 91.7%), embodied solution (6.15/7, 87.8%) and
task execution (6.17/7, 88.1%). We show that AToM-Bot excels
in generating and executing feasible plans to fulfill unspoken
human needs. Videos and code are available at https://affective-
tom-bot.github.io/.

I. INTRODUCTION

How can robots fulfill human needs without being directly
told what to do? Accurately modeling human needs and
generating executable plans under physical constraints is a
challenge in Human Robot Interaction (HRI). In this work,
we studied this challenge by leveraging the vision language
model and affective Theory of Mind.

Language is an interactive interface for humans to commu-
nicate with robots. There is considerable research on lever-
aging large language models for robot task planning [1, 2,
3, 4, 5, 6] and control grounding [7, 8, 9, 10, 11, 12, 13].
However, most of work begins with a clear verbal command
directed at the robot. In real life, many human needs emerge
before human formalize them into explicit verbal instructions;
for example, when focusing on work, feeling like a cup of tea,
we might reach for the tea cup while staring at the computer
screen. When we find the tea cup is already empty, we might
put it down and continue working rather than pausing work
to make a tea. If there’s a robot nearby, we may as well not
bothering ask it to make tea. But if a robot is proactively
observing human, it’s not hard for it to infer human current

need for “something to drink”, then the robot can help satisfy
the need within its ability.

 

Human: {
  emotion: relaxed,
  gesture: lying down with hands on abdomen,
  eye gaze: closed,
  activity: resting or napping,
  intention: to relax or sleep,
  need: comfort, possibly a blanket for warmth,
}

Environment: {
  location: living room,
  lighting: dim,
  objects: {
    name: blanket,
    affordance: provides warmth
    }, ...
}

Robot_action: {
  grab: {
    objects: [blanket]
  },  
  manipulate_environment: {
    object: {
      name: lamp switch,
      how: turn off the lamp
    }
  }
}

Human: {
  emotion: neutral,
  gesture: sitting, holding a book,
  eye_gaze: looking at the book,
  activity:  reading,
  intention: to gain knowledge or enjoy leisure time,
  need: concentration, comfortable seating
}

Environment: {
  location: living room,
  lighting: dim,
  objects: {
    name: floor lamp
    affordance:  provides lighting
    }, ...
}

Robot_action: {
  manipulate_environment: {
    object: {
      name: lamp switch,
      how: turn on the lamp
    }
  }
}

?

Fig. 1. AToM-Bot is a novel task generation and execution framework
for proactive robot-human interaction, towards the embodied fulfillment of
unspoken human needs.

There is work focusing on inferring human intention with
non-verbal cues with the theory of mind [14, 15, 16, 17], but
not yet grounded on a real-world robot. Such human-agent
collaboration tasks require active participation in the same
task. However, most of the time, people are engaged in solo
tasks, focusing mainly on the task at hand, but needs beyond
their main task emerge. For example, while immersive reading,
one might ignore the time passing by and the darkening sky;
the need for lighting emerges for humans to continue ongoing
tasks. Since these tasks are relatively minor compared to the
main task, people may not turn them into spoken tasks or
address these spontaneous needs. Or when a person falls asleep
on the sofa, they can no longer take initiative. This is especially
the case for the elderly, or the disabled, who may need help the
most but sometimes cannot even instruct a robot to act. At this
time, a robot that understands and observes can use multimodal
information to detect human needs and help humans fulfill
these non-primary task needs, thus better enabling humans to
perform their primary needs.

Our method proposes AToM-Bot - Affective Theory of
Mind robot - a framework for satisfying unspoken human
needs utilizing Vision Language Model (VLM) [18] prompted
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with Affective Theory of Mind [19, 20]. We make the fol-
lowing contributions: (1) Given a visual input of a human
and their surrounding environment, we use VLM to detect
human needs and generate embodied solutions to address these
needs. (2) We grounded AToM-Bot with open-vocabulary
navigation and imitation learning. (3) We designed 16 common
daily scenarios to evaluate robot performance with human
satisfaction rating and similarity to human response. AToM-
Bot achieved 91.7%, 87.8% and 88.1% satisfaction in need
detection, embodied solution and task execution. AToM-Bot
represents a new potential for future coexistence and interac-
tion between humans and robots in everyday life.

II. RELATED WORK

A. Non-verbal Communication

The deployment of LLM in robotics has empowered better
translation of human commands to robot action; people can
communicate with robots using text [1, 4, 5], spoken lan-
guage or even yelling [21]. But apart from the explicit direct
communication through language, which is highly abstract
and has been through a thoughtful process, and easy to be
grounded into actions, there are a significant part of human
communication happened in a non-verbal way; it can be
with facial expression, eye gaze [22], non-verbal voice [23],
body poseture [24] (head direction [25] , body direction, foot
direction), body gesture [26, 27] (sign language if push to
the limit), action sequence [28, 29, 30] or even biological
signals (accelerated heart or respiratory rate). These non-verbal
signals, even not recognized by human selves, convey a high
dimension of human state. There is existing work on social
perception with observing human action, which is also a non-
verbal cue, for a time period to infer human intention and
generate assistive plan [14], but they are primarily done in
simulation and we designed the robot to catch the nonverbal
cues from the human and surrounding environment before
a language command is formed and came up with a set
of plausible solutions involving visible objects that can be
manipulated in the environment.

B. Theory of Mind for Human Robot Interaction

Theory of Mind (ToM) is an innate human ability to infer
others’ internal states based on external behaviors [31, 32].
Children as young as three years old demonstrate an initial ca-
pability in this cognitive function [33, 34]. ToM is typically di-
vided into two categories: Cognitive ToM and Affective ToM.
Cognitive ToM pertains to the inference of others’ beliefs,
intentions, and desires, which are essential for understanding
verbal expressions and predicting behaviors in complex social
situations [20]. Current HRI frameworks predominantly utilize
Cognitive ToM, such as predicting a human’s next action or
requirement in a rational way [35, 36, 37, 38]. Affective ToM,
on the other hand, involves recognizing and responding to the
emotional states and feelings of others, facilitating emotional
resonance and support [39]. [19] suggested that Affective
ToM requires the integration of Cognitive ToM and empathy.
Cognitive ToM is crucial for understanding emotional states by

inferring the reasons behind someone’s emotions or feelings.
Empathy is a multifaceted psychological concept encompass-
ing Cognitive, Affective, and Somatic Empathy [40]. Cognitive
Empathy refers to the intellectual understanding of another’s
thoughts and emotions. Affective Empathy involves empathet-
ically resonating with another person’s emotional experiences.
Somatic Empathy includes the physical sensation of what
another individual is experiencing. These aspects of empathy
are instrumental in enhancing HRI by enabling robots to better
interpret and respond to both the mental and physical states
of humans.

III. PROBLEM STATEMENT

In addressing the challenge of enabling a robot to accurately
identify and satisfy human needs, we adopt a comprehensive
process that starts with gathering detailed observations and
concludes with the executing specified actions. This process
includes visual data collection analysis on humans and the
environment, inference of human internal states, identification
of needs, task formulation, and the final decomposition of tasks
into executable actions.

The process begins with the observation O of human be-
haviors and environmental factors from the input information
I (a RGBD image in our case) using a generative pre-trained
model Mobserve, respectively denoted as:

O = {Ohuman = {of, oe, oh, og, op},
Oenvironment = {ol, oI, {objk

human}
n1
k=1}}

= Mobserve(I) (1)

where in human observation, of, oe, oh, og, and op de-
note facial expressions, eye gaze, head direction, gestures,
and posture, respectively; in environmental observations, ol,
oi, objk

human and n1 denote location, illumination conditions,
interactive object k for human, the number of interactive object
for human respectively.

From these observations, Mstate infers the internal states (S)
of individuals, which includes both mental and physical states
such as emotions, intentions, and various sensory inputs:

S = {Sphysical = {st, sta, sv, ss, ssm, sve, sp, si},
Smental = {sem, sa, sd, sin}}

= Mstate(O) (2)

where in physical states, st, sta, sv, ss, ssm, sve, sp, and si
denote touch, taste, vision, sound, smell, vestibular, proprio-
ception, and interoception respectively; in the mental states,
sem, sa, sd, and sin denote emotion, attention, desire, and
intention respectively.

These states allow us to identify any unmet needs (N ): N =
Mneeds(S). Upon identifying these needs, we analyze the need
and constraint (C) of the robot body and the environment to
generate feasible tasks (T ) byMtask, denoted as:

T = Mtask

{
N,C = {cm, cg, co, {objk

robot}
n2
k=1,

{objpotential, k
robot }n3

k=1}
}

(3)



where in the robot’s body constraints, cm, cg and co represent
mobility, grasp ability and functional operating ability, respec-
tively; and in the the environmental context objk

robot represents
the visible and manipulable objects for robots, objpotential, k

robot
represents the potential existing objects for robots in this
specific environment.

Finally, the formulated tasks are decomposed into a se-
quence of t steps executable robotic actions (A) by Mdecompose:

A = Mdecompose(T ) = {a1, a2, . . . , at},
at ⊆ {am, ag, ao} (4)

where am, ag , ao denotes moving to a certain target(object
or human), grasping a certain object and operating a certain
object.

Fig. 2. Overview of AToM-Bot, a robotic system for identifying and
responding to human needs. It integrates human observations and environ-
mental attributes to infer human needs. It then generates tasks for a robot by
navigating to objects, manipulating them, and assisting human in daily setting.
Due to the requirements of blind peer review, the individuals in the images
were anonymized.

IV. METHOD

We present a robot-human interaction framework designed
to proactively detect and address human needs empowered
by open-vocabulary perception and deduction capabilities of
VLM and visual foundation model (See Figure. 3). To be more
specific, we employ GPT-4V [41] to (i) extract the observation
of human behaviors and environment factors, (ii) infer internal
human states from the observations, and (iii) finally generate
executable tasks catering to the unexpressed human needs. As
for the physical execution of the generated task plan, we rely
on Grounding SAM [42, 43, 44] to pinpoint the locations of the
concerning objects and human users, and DINO-ViT features
[45, 46]to retrieve the knowledge of low-level manipulation
skills from pre-recorded human demonstrations.

A. Proactive Human Need Detection

Our robot employs a head-mounted camera to observe hu-
mans. Relying solely on raw observations for input into VLM
often leads to misinterpretations of human states. How do
human infer another person’s internal states based solely on

image? In fact, when we engage in affective social reasoning,
it is easy to re-experience and bring past experiences into
the process [47, 48]. Recalling these experiences can also
activate related sensory pathways, causing similar responses.
This capacity for empathetic thinking is precisely what robots
lack. Here, we employ reasoning based on common sense,
using typical human mental states [49, 50] and physical states
[51, 52] as cues to prompt robots to deduce current human
feelings through visual clues.

From a first-person viewpoint, the camera captures various
non-verbal human expressions such as facial expressions,
eye gaze, head direction, gestures, and posture, along with
environmental attributes like location, lighting, and nearby
objects. These observations enable us to deduce mental states
(e.g., emotions, attention, intentions) and physical conditions
(e.g., senses of touch, taste, vision, hearing, smell, as well as
vestibular, proprioceptive, and interoceptive senses), and also
to recognize environmental factors beyond visual cues, such
as sound and temperature.

Integrating all these elements, we propose a structured
prompt for the VLM that systematically incorporates these
diverse data streams to infer human needs, as depicted in
Figure. 2. Through a detailed description of relative factors,
we bring the subconscious AToM in humans during social
inference into our robot, which greatly enhances its ability
to understand human internal states.

B. Embodied Task Generation for Human Need Solution
Upon identifying a specific human need (or potentially mul-

tiple needs), the robot should devise a practical and immediate
solution. Equipped with mobility and the ability to manipulate
objects with a single hand, the robot’s actions must be feasible
and directly executable [1, 12]. Instead of complex tasks like
completing someone’s work or moving heavy appliances like
a fridge, the robot should focus on simpler, achievable tasks
within its capabilities and current context.

The robot can interact with objects visible in the scene
or infer the presence of everyday items based on the scene,
utilizing common sense reasoning. For example, it might
predict a yoga block in a gym but not in an office. The robot’s
manipulative abilities are categorized into two primary actions:
moving and using objects. This distinction is crucial due to its
single gripper and one-arm configuration.

The VLM evaluates whether fulfilling a need involves
merely moving or actively using an object. For instance,
transferring a blanket to a person might satisfy a need, whereas
merely moving a lamp to the person would be inappropriate
and ineffective. If a need involves using an object, the robot
must determine whether it can perform the task given its
configuration. For example, it can turn on a light but cannot
operate a massage gun for a human. This approach ensures
that the robot’s responses are both relevant and within its
operational scope.

C. Open-Vocabulary Mobile Manipulation for Task Execution
Task-Conditioned Navigation Once the robot generates a

task to perform, it employs its pan-tilt unit (PTU) to scan



the environment dynamically. The scan starts from a central,
neutral position and includes systematic horizontal and vertical
sweeps, ensuring comprehensive visual coverage. The system
uses the Grounding SAM [44] algorithm to segment and
identify relevant objects from the visual data. Upon detecting
an object that matches the specified criteria, the robot utilizes
depth information from RGB-D images to pinpoint the object’s
location.

Once the position of the object is calculated, the robot
plans its navigation, balancing the necessity of proximity for
precise manipulation with the importance of maintaining a
safe distance. The navigation goal is set at a point along
the extended line of the end effector’s z-axis, optimizing the
approach towards the object.

Additionally, the robot must locate the person, if the iden-
tified task involves moving an object to a human. For this, we
utilize the Grounding SAM [44] algorithm to detect humans
within the environment.

Manipulation via Trajectory Alignment For object ma-
nipulation, we follow the DINOBot [46] framework, which
utilizes DINO-ViT features to perform the spatial alignment
between the current observation and the pre-recorded demon-
strations for manipulation skills. When the robot encounters
an object, it uses image-level semantic features to identify
the most visually similar object from a database of histor-
ical human demonstrations. Once a visually similar object
is identified, the robot utilizes pixel-level geometric features
to precisely align the relative spatial position and orientation
between the camera frame and the target object. This align-
ment, crucial for effective interaction, involves adjusting the
robot’s position and orientation to align with the pre-recorded
trajectory. Once there is an error between the current relative
pose and the pre-recorded relative pose, the robot arm executes
a delta end-effector path to complete the manipulation task.

V. EXPERIMENTS

A. Experimental setup

Scenarios: Our experiment setup involved 16 scenarios
(Figure. 3) conducted within four commonly encountered ev-
eryday environments: office spaces, home gyms, living rooms,
and kitchens. In each setting, humans typically encounter
various physical or mental states of distress. We displayed
4 typical instances from each environment on the upper half:
eating spicy food in the kitchen, feeling tired in the office,
sweating while cycling in a home gym, and falling asleep on
a sofa. In order to provide more possibilities for the robot to
operate and ensure the ecological validity of the test, we also
prepared objects matching the scene in the same space outside
the picture, ranging from 10 to 18 kinds for each scene. This
includes the solution for the robot we tested in advance in
Section 5.3.

Human-centered Metrics: We deployed our robot to react
to these scenarios and recruited 59 participants to conduct a
series of evaluations on satisfaction with various stages of
our system and its similarity to the human mind. We also
conducted a real-world execution success rate analysis.

Robot Setup: The robot is a mobile manipulator with a
7 degree-of-freedom arm from Realman, a parallel gripper
from DH-ROBOTICS, and an omnidirectional mobile base
from Agilex. It uses two Realsense 435 cameras, with the
top camera running at 640x480, and the wrist camera running
at 320x240.

B. Comparison and Evaluation

Human Need Detection In Experiment 1, participants were
presented with images depicting various scenarios and asked to
provide open-ended responses identifying the inferred needs.
Subsequently, they evaluated the robot’s responses (output of
using prompt described in Section 4.1) on a scale from 1 to
7, where 1 indicates extreme dissatisfaction and 7 indicates
extreme satisfaction. We employed text embedding and unsu-
pervised clustering algorithm [53] to categorize the responses
into 3-5 distinct needs and corresponding solutions. The need
most frequently identified by humans served as the standard
for comparing the robot’s generated needs, resulting in a
Similarity score. The average similarity score was 72.8%. The
overall satisfaction rating was 6.42±0.32 out of 7, suggesting
that, despite variability in human output, participants were
generally delighted with our outputs, and the robot’s output is
very similar to the average human. The human need detection
phase demonstrated a high degree of alignment between the
robot’s inference of needs and human perceptions.

Embodied Task Generation as Human Need Solution In
Experiment 2, participants were asked to generate solutions
corresponding to the needs in Experiment 1 and to rate satis-
faction with the solutions generated by the robot. The analysis
methods were the same as those used in Experiment 1. The
average similarity score was 69.6%. The overall satisfaction
rating was 6.15±0.55. It is noteworthy that in Tasks 5 and 8,
the similarity between the robot’s and the human’s solutions
was relatively low (16.9% and 13.1%), yet the satisfaction
ratings remained high( 6.52 ± 0.71 and 5.54 ± 1.56 ). This
is because most humans chose to directly use their hands to
help stabilize or push the participant for better stretching, an
approach unsuitable for our robot. Instead, our robot opted to
find assisting equipment within its capability range, such as
yoga bricks or resistance bands. This is a prime example of
the effectiveness of the embodied constraints in our prompt.

Real World Execution For real-world implementation, we
recorded videos of the robot successfully executing solutions
from Experiment 2 in a third-person perspective. Participants
scored the keyframes for satisfaction, resulting in an average
satisfaction rating of 6.17±0.54. We also evaluated the robot’s
task success rate. Since the tasks were long-horizon, involving
various factors such as object detection accuracy, spatial
alignment precision with records, and navigation execution
accuracy, there were considerable fluctuations in success rates,
especially in tasks requiring precise operations like turning on
lights or handling soft, whole-body movements like covering
with a blanket. Nevertheless, the overall performance was
69.4%. See details in AToM-Bot.

https://affective-tom-bot.github.io/


Fig. 3. Human and robot response to 16 task scenarios. The human responses are shown in the bar chart. The robot responses are marked by the “robot
choice” icon. Due to the requirements of blind peer review, the individuals in the images were anonymized.

Task
ID

Need Detection Embodied Solution Task Execution

Similarity Satisfaction Similarity Satisfaction Satisfaction Success
Rate

1 28.8% 6.59 ± 0.62 96.7%96.7%96.7% 6.23 ± 0.98 6.46 ± 0.72 8/10
2 83.1% 6.27 ± 0.86 69.5% 5.42 ± 1.64 5.83 ± 1.33 9/10
3 88.1% 5.83 ± 1.15 39.0% 5.83 ± 1.42 6.25 ± 0.93 5/10
4 78.0% 6.58 ± 0.62 78.0% 6.63 ± 0.51 6.24 ± 1.07 8/10
5 49.2% 6.55 ± 0.69 16.9% 6.52 ± 0.71 6.52 ± 0.83 4/10
6 76.3% 6.63 ± 0.68 98.3% 5.39 ± 1.97 5.52 ± 1.66 10/10
7 94.9%94.9%94.9% 6.61 ± 0.57 83.1% 6.59 ± 0.69 6.42 ± 0.91 4/10
8 88.1% 5.79 ± 1.47 13.1% 5.54 ± 1.56 6.31 ± 1.14 10/10
9 30.5% 6.45 ± 0.77 35.5% 6.52 ± 0.74 6.11 ± 1.28 5/10

10 84.7% 6.68 ± 0.55 89.1% 6.76 ± 0.496.76 ± 0.496.76 ± 0.49 6.79 ± 0.48 10/10
11 83.1% 6.55 ± 0.77 48.0% 5.37 ± 1.91 4.96 ± 1.82 5/10
12 89.8% 6.62 ± 0.59 88.1% 6.65 ± 0.70 6.42 ± 0.94 9/10
13 69.5% 6.48 ± 0.86 76.2% 6.37 ± 1.12 6.82 ± 0.526.82 ± 0.526.82 ± 0.52 4/10
14 64.4% 6.66 ± 0.58 93.2% 6.55 ± 0.83 6.34 ± 0.92 7/10
15 83.1% 6.70 ± 0.616.70 ± 0.616.70 ± 0.61 94.9% 6.69 ± 0.68 6.55 ± 0.75 4/10
16 72.9% 5.82 ± 1.40 94.9% 5.78 ± 1.68 5.91 ± 1.55 9/10

72.8% 6.42 / 7 69.6% 6.15 / 7 6.17 / 7 69.4%

TABLE I
HUMAN COMPARISON AND EVALUATION OF NEED DETECTION,
EMBODIED SOLUTION, AND TASK EXECUTION OF ATOM-BOT.

VI. CONCLUSION

In this work, we introduce AToM-Bot, a comprehensive
framework for inferring human mental and physical needs,
utilizing Vision Language Models enhanced with Affective
Theory of Mind. AToM-Bot proactively generates and exe-
cutes tasks based on these inferences, tailored to real-world
environments and everyday scenarios. This approach provides
substantial benefits in adapting to a wide range of unspoken
instructions and dynamic human contexts, enabling more in-
tuitive and effective robot-human interactions.
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VII. APPENDIX

A. Ablations

We performed ablation studies to assess the impact of
key components: AToM for need detection and the embodied
constraints for grounding task generation in our prompt. These
components were evaluated for their contribution to need sim-
ilarity (Table II) and solution similarity (Table III) , detailed
in Appendix. AToM: Removing AToM significantly lowers
need and solution similarity by 26.4% and 31.2%, respectively.
Embodied Constraints: Operating without constraints results
in much lower scores in both need and solution similarity
by 4.1% and 38.6%. Employing both AToM and embodied
constraints as AToM-bot achieves the highest improvements in
need and solution similarity, reaching 72.8% and 69.6%. These
results confirm that both AToM and embodied constraints
are essential for aligning with human reaction. The ablation
studies further solidified the importance of both AToM for
accurate need detection and the role of embodied constraints
in ensuring the practicality of generated tasks.

These results highlight AToM-Bot’s capability to not only
understand and predict human needs effectively but also to
generate and execute tasks that address these needs in a real-
world setting.

Prompt w/o AToM w/ AToM

w/o Constraints 33.2% 68.7%
w/ Constraints 46.4% 72.8%72.8%72.8%

TABLE II
NEED SIMILARITY.

Prompt w/o AToM w/ AToM

w/o Constraints 4.9% 31.0%
w/ Constraints 38.4% 69.6%69.6%69.6%

TABLE III
SOLUTION SIMILARITY.

B. Limitation and Future Work

Despite compelling results, AToM-Bot has several limita-
tions. First, the robot is equipped with only two cameras,
limiting its sensory input to visual information. In future
enhancements, the robot could be equipped with multi-modal
sensors like audio sensors and thermometers, enabling it to

receive more information and analyze human needs with
greater breadth. Second, the current experiment did not employ
sequential detection; long-term dynamic observations rather a
snapshot will further increase the detection precision. Third,
all the target objects are within the robot’s visibility by turning
the PTU. If equipped with zero-shot object navigation modules
[54, 55] the robot will have the potential to navigate outside
the room for more complex task and more possible solu-
tions. Fourth, we observed cases where human participants’
solutions differed from those of the robot in solutions to
eating spicy food and stomach discomfort that predominantly
resulted from cultural backgrounds. Future involvement of
participants from diverse cultural backgrounds will provide
greater diversity. Lastly, although our framework exhibits a
certain degree of generalizability, where similar visual features
of objects allow for the transfer of recorded trajectories—such
as among different cups or between handheld vacuum and hair
dryers—these capabilities are still constrained by our reliance
on pre-recorded movements. In the future, we could enhance
the robot’s flexibility by exploring more trained end-to-end
models that extend from visual features to low-level actions,
thereby developing more adaptable and autonomous movement
strategies.
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