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Abstract—Users develop mental models of robots to conceptu-
alize what kind of interactions they can have with those robots.
The conceptualizations are often formed before interactions with
the robot and are based only on observing the robot’s physical
design. As a result, understanding conceptualizations formed
from physical design is necessary to understand how users intend
to interact with the robot. We propose to use multimodal features
of robot embodiments to predict what kinds of expectations users
will have about a given robot’s social and physical capabilities.
We show that using such features provides information about
general mental models of the robots that generalize across
socially interactive robots. We describe how these models can
be incorporated into interaction design and physical design for
researchers working with socially interactive robots.

I. INTRODUCTION

Mental models of interactions with systems, including
robots, are instrumental in allowing users to naturally interact
with arbitrarily technically complex systems [27]. Human-
computer interaction has successfully used the concept of
design metaphors to develop visual interfaces and interactions
that are easy for users to learn [29, 14, 16, 19].

Understanding how users expect to interact with robots,
compared to computers, is especially challenging because
robots are physically embodied; they have a wider variety of
form factors and interaction affordances than typical computer
systems. While these additional modes of communication in-
crease complexity, they additionally contribute to the increased
social presence of robots compared to computers [9]. In this
work, we propose to leverage information about how a robot
is physically embodied to understand how people form mental
models of that robot. This work leverages the Metaphors to
Understand Functional and Social Anticipated Affordances
(MUFaSAA) dataset [11] that contains 165 robot embodiments
and their associated ratings of social and functional attributes
to understand users’ mental models.

We contribute a set of models that can predict how people
expect robots to behave socially and functionally, using image-
based and text-based features. We show that using pre-trained
image features can perform as well as using a hand-crafted
feature set, reducing the labor required to annotate these
features. We also provide insights for how this model can be
used in robot design and interaction design.

II. BACKGROUND

This section provides a brief overview of the concepts of
embodiment in robotics and users’ mental models of robots.

A. Robot Embodiment

Robots are inherently different from computer-based agents
because they are situated in the physical world and have the
ability to interact with it, navigate in it, and/or manipulate
it. Due to this interactive nature, robots have a stronger social
presence and can leverage additional modes of communication
inaccessible to other forms of technology, including prox-
emics, gaze, and gesture [9]. Previous work in both psychology
and robotics has shown that people form expectations from
initial observations of new technologies even before extensive
use [12, 5, 22, 20]. The physical design of the robot, i.e.,
its embodiment, is a key component of how users form
expectations of robots capabilities and possible interactions
with those robots. Consequently, for robots to be effective, they
must understand the social and functional expectations that
users place on them so that they can meet those expectations
appropriately. Failing to do so negatively impacts adoption of
these systems [7, 8, 20].

While previous works has examined ways to model how
features of embodiment affect perceptions of particular axes of
robot identity, such as age/gender [24] and anthropomorphism
[25]. Our work is the first to show how embodiment dic-
tates both functional and social expectations simultaneously,
and that these expectations can be understood from easy-to-
generate features in addition to hand-crafted features.

B. Mental Models and Design Metaphors

Mental models are conceptual frameworks that people
automatically develop to understand how they can interact
with other agents [18]. Previous work has shown that users
with mental models that accurately represent the complex
underlying system are more effective at using those systems
[17]. Mental models are often based on capabilities robots are
expected to perform [27] and are formed before interaction,
but are updated as users interact with systems and learn more
about how systems work. However, even after interaction users
can still form and retain incorrect mental models of robots’
real capabilities. For example, past work has shown that



Fig. 1: Process for generating features from the MUFaSAA dataset.

robots using speech are expected to perform better physical
manipulation despite the fact that those two capabilities are
technically unrelated [7]. Understanding users’ initial mental
models is important for calibrating robot capabilities, in order
to avoid misleading user expectations.

Design metaphors are often used to set expectations of new
technologies; they associate unfamiliar systems with familiar
and related concepts to provide a user with schemas to
interact with novel systems. For example, in one study, iden-
tical chatbots were described with different design metaphors
(e.g., “a toddler”, “a trained professional”, “an inexperienced
teenager”, etc.), shaping user perceptions of the chatbot’s
warmth and competence, thereby affecting both the users’ pre-
interaction intention to use the chatbot and their subsequent
intention to adopt the chatbot post-interaction despite being
the same technical implementation [16]. By studying the
metaphors people use to understand robot embodiment, we
hope to gain insight into how people expect to interact with a
given robot embodiment.

III. METHODS

Our work leverages the MUFaSAA dataset to predict the
psychological constructs that describe the social and functional
expectations users place on robots, representing the users’
mental models of the robot. We outline our process for
predicting these expectations below.

A. MUFaSAA Dataset Description

The MUFaSAA dataset is a collection of 165 socially
interactive robots [11] that have been developed for research
or as consumer products. All robots have a standardized image
representation that includes a front and side view with a
height reference, a set of hand-coded design features (see [11]
for feature descriptions, annotator information, and interrater
reliability statistics), and a set of three design metaphors
that participants used to describe the robot. Each robot also

contains ratings of the three constructs from the validated
Robotic Social Attributes scale [6]: Warmth, Competence,
and Discomfort, and three constructs from the EmCorp-Scale
[13]: Perception and Interpretation, Tactile Interaction, and
Nonverbal Communication. The constructs are continuous
values between -3 and 3 and represent the average rating of
a 7-point Likert scales across approximately 30 participants
for each robot. In particular, we focus on these six constructs
because they are averaged across several Likert items. The
other constructs reported by the dataset are single Likert items,
and thus are not necessarily amenable to regression analysis
[28].

B. Creating Features of Robot Embodiment

In this work, we generated three modes of features for
each of the robots: hand-crafted (HC) features, metaphor (M)
features, and image-based (IM), to be used in the learning
process shown in Figure 1. Metaphor features and image-based
features were deep features that came from large pre-trained
models that were available from the transformers library [30].
We describe each feature more next.

1) Hand-Crafted Features: Hand-crafted features came en-
tirely from the pre-collected MUFaSAA dataset. These fea-
tures were characteristics of the robot embodiment that previ-
ous research found to be important for human robot interaction
(e.g., height [26], waist-to-hip ratio [2, 3], presence of a mouth
[15], etc.) as well as other features that participants used
to describe the robots in the dataset. These features were
labeled by annotators that had access to images of the robots
and other information from websites created by the robots’
manufacturers. The values were all scaled to be between 0
and 1. For each robot, there were 59 HC features.

2) Metaphor Features: Metaphor features were created
from the three metaphors that were most often used to describe
each of the robots in the MUFaSAA dataset. These metaphors
consisted of either a single noun (e.g., “a dog”, “a kiosk”, etc.)



TABLE I: Average MSE for Regression Across Different Sets of Features.

Features Used Warmth Competence Discomfort Perception and Interpretation Tactile Interaction Nonverbal Communication
HC 0.145** 0.130* 0.306* 0.188* 0.381*** 0.182***
M 0.209 0.163 0.401 0.262 1.390 0.387
IM 0.177 0.119** 0.344 0.202* 0.445*** 0.190***

HC + M 0.137** 0.134* 0.311* 0.184* 0.388*** 0.182***
HC + IM 0.138* 0.122* 0.303* 0.182* 0.337*** 0.174***
M + IM 0.183 0.122* 0.355 0.216 0.466*** 0.187***

HC + M + IM 0.135** 0.124* 0.307* 0.182* 0.349*** 0.173***
Predict Dataset Average

(baseline) 0.208 0.176 0.398 0.278 1.42 0.452

All significance values calculated from a t-test with respect to the baseline’s MSE over all folds. * denotes p < .05, ** denotes p < .01, *** denotes
p < .001.

or the name of a specific reference accompanied by context
from where the reference is from (e.g., “Rosie the Robot from
the Jetsons”, “Eve from WALL-E”, etc.). The metaphors were
converted to vectors using a BERT model pre-trained on the
Toronto BookCorpus [31] and English Wikipedia datasets. The
pre-trained model output a vector in a 512-dimensional space.

3) Image-Based Features: Image-based features were cre-
ated from the standardized images of the robots in the MU-
FaSAA dataset. The images were converted to vectors based
on a Vision Transformer (ViT) model that was pre-trained
on ImageNet-21k [10]. The pre-trained model outputs a 512
dimension vector, which we use as our learned features.

C. Regression Experiment
We formulated understanding user social and functional

expectations as a series of regression problems. We used
Support Vector Machines (SVMs) to regress robot features
onto each of the six constructs in the RoSAS and EmCorp
scales. Experiments were conducted in the scikit-learn frame-
work [23]. We selected SVMs because they are often used
for datasets of similar size [21], and empirically performed
the best across all constructs compared to all other regression
techniques implemented in scikit-learn. Ground-truth labels
came from the user-reported values in the MUFaSAA dataset.

1) Model Details: The SVM regressor used radial basis
function as a kernel. The regularization hyperparameter, C, and
the margin of tolerance hyperparameter, ϵ, were selected by
performing a grid search over the discrete values [.001, .01, .1,
1, 10, 100] for both hyperparameters. These hyperparameters
were evaluated by their average mean squared error loss over
all constructs and folds in a 20-fold cross-validation setting.
The best-performing values were C = 1.0 and ϵ = 0.1.

2) Evaluation: We calculated the average mean squared
error (MSE) for each of the six constructs of interest in a 20-
fold cross-validation setup, to perform statistical evaluations
of our models across folds. We compare our results to the
baseline of predicting the average value for the constructs
across all robots in the training folds. Statistical analysis is
necessary because metrics are noisy on the scale of 165 data-
points, and we seek to verify which combination of modalities
performs statistically better than our baseline, which is not
captured by point estimates of performance [1]. We performed
this evaluation with every combination of the modalities of
describing a robot’s embodiment outlined in Section III-B.

IV. PRELIMINARY RESULTS

The average MSE across the 20-folds for each method are
displayed in Table I and show that we can quantitatively
predict ratings of social and functional constructs from features
of robot embodiments.

A. Single Mode Results

We found significant improvements over the baseline with
only one mode of feature being used for the HC and IM
features. There were no significant differences between the HC
and IM features in regressing on the six constructs. This is of
particular interest because it suggests that features used from
frozen pre-trained networks can be as effective at predicting
social and functional expectations as hand-crafted features of
robots without the difficulties associated with annotation.

We did not observe any significant improvements using only
metaphor information to predict robot expectations. This may
be because the features that can be gained from language
models do not contain information on the physical interac-
tions that the metaphors have. Thus, to gain more use from
these metaphors, language models may need to ground their
understanding of concepts in physical experience [4].

B. Multiple Mode Results

Nearly all combinations of modalities, except M+IM,
showed significant improvements over the baseline. In gen-
eral, the best performing methods involved combinations of
multiple modes of features. This suggests that different modes
of features have complementary information that is useful in
understanding users’ mental models. However, these combina-
tions did not show significant improvements over single modes
of features.

V. FUTURE WORK AND CONCLUSION

This work introduces features of robot embodiment to
explore how people form mental models of robots. Our results
show that features of embodiment can be used to better
understand social and functional expectations of robots, and
point out several ways to expand this work. In particular, the
text-based metaphor features were not as helpful for under-
standing expectations as the other features. Future work can
explore alternate way to calculate these features using other
types of information. The MUFaSAA dataset also contains
information on frequency of metaphor responses and levels



of abstraction that describe how closely the robot resembles
each metaphor. This additional information may be useful for
generating more informative features for understanding users’
social and functional expectations of robots.

We hope that in developing a way to interact with embodi-
ment data, designers in the future may be able to incorporate
this data into their design process for both developing new
robots and new behaviors for extant robots. By leveraging
design information, designers can more accurately understand
how their robot will be perceived by general populations. For
robot designers, this can be used to decide which features
should be included in a robot that either reinforce desired
metaphors, or obscure unwanted metaphors. For interaction
designers, having this understanding of expectations for em-
bodiment are critical to decide which behaviors are worth
developing.

The methods and initial results presented here are prelimi-
nary work that shows the potential for features of embodiment
to be useful for determining how robots are expected to
behave. Notably, there were only static images used to collect
the data on social and functional expectations of the robot,
however video data may more strongly set these expectations.
These results are also subject to other differences based on
external factors such as social and cultural contexts and the
experiences of real-world interactions users have with these
robots. While the results can be further refined, they show
important relationships between how robots are embodied
and how they are expected to act, providing insights for the
physical and algorithmic design of future robots.
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