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Abstract—Action anticipation is targeted to estimate the cor-
rect verb-noun that describes a human’s intended movements
(verb) and objects (noun) in the future from the hundreds of
possible verb-noun combinations. Different from existing methods
using commonly-used fusion mechanisms (e.g., early fusion, late
fusion and hybrid fusion) or transformer-based fusion mechanism
(i.e., assigning a certain modal feature as query and other modal
features as key and value) to fuse multimodal features, this
paper for the first time proposes the Multi-round Interactive
Fusion (MIF) mechanism for action anticipation. Specifically, we
propose two kinds of MIF mechanisms, namely Parallel MIF
and Progressive MIF. Parallel MIF treats each modal feature
equally and each modal feature is alternately to be assigned as
the query. Progressive MIF firstly fuses the features conveying
the static information (i.e., scene and object features), and then
combines the dynamic information (i.e., optical flow) to generate
the final feature. Benefitting from the proposed MIF, our model
outperforms state-of-the-art methods by large margins on two
public datasets, achieving 14.07% action accuracy improvement
on the EGTEA dataset compared with recently proposed AFFT
model.

I. INTRODUCTION

With the rapid development of artificial intelligence tech-
nologies, anticipating human intentions has become crucial
in many fields. Human actions[4, 5, 17], human attention
[13, 14, 15] and intention objects [3, 10] are manifestations
of human intent. In this paper, the focus is primarily on
exploring human actions (as illustrated in Figure 1). However,
human actions exhibit the great diversity and can be influ-
enced by various factors. This complexity demands prediction
models capable of dealing with uncertainty and possessing
high generalization abilities. Moreover, human actions exhibit
complex time dependence, requiring models to consider more
contextual information.

To accurately anticipate actions, researchers have proposed a
number of methods [4, 5, 8, 9, 12, 17, 19]. They typically fuse
three modes of data: RGB, optical flow (FLOW) and object
(OBJ). The fusion of multimodal data improves the prediction
ability for several reasons: Multimodal fusion provides a
more comprehensive perspective by capturing relationships
among scenes, objects and motions, which helps to better
understand the contextual information of actions. Although
these methods have achieved some success, there are still
limitations. Currently, the main fusion methods used are early
fusion, late fusion and hybird fusion, they are relatively simple

Fig. 1. The action anticipation task predicts the next action based on the
observed frames. Anticipation time τa is how much in advance the action has
to be anticipated.

and rough. Early fusion can learn to exploit the correlation
and interactions between low-level features of each modality.
Late fusion refers to a method in which a model is trained on
different modalities and then the outputs are fused [1]. Hybrid
fusion combine early fusion and late fusion, integrating the
advantages of early fusion to capture feature relationships and
late fusion to handle overfitting [21], but also increases the
training difficulty of the model. As a result, models produced
by these fusion methods have some obvious shortcomings,
including: 1) inadequate processing of multimodal data leading
to characteristic information loss and repetition, 2) insufficient
correlation modeling to capture complex relationships across
modalities and 3) lack of flexibility and adaptability affects
the robustness and reliability of models.

Therefore, this paper proposes a Multi-round Interactive
Fusion (MIF) model to address the aforementioned shortcom-
ings. MIF utilizes interactions between different modalities to
facilitate information exchange and integration, providing a
better way to capture semantic information and relationships
across modalities. Furthermore, it improves the efficiency of
data training and information mining. We explore two different
interactive fusion methods. One is the parallel interactive
fusion, and the other is progressive interactive fusion. Each
has its own advantages. To verify the validity of our model,
we compare our Parallel MIF and Progressive MIF with
existing methods on EPIC-Kitchens [2] and EGTEA Gaze+
[11]. The experimental results show that the two proposed
fusion methods achieve significant performance improvement
in action anticipation.

The main contributions of this paper are as follows: 1)
we propose two kinds of MIF mechanisms, both of them



Fig. 2. The structure of Multi-round Interactive Fusion (MIF).

can effectively integrate information from different modes and
achieve accurate action prediction, 2) we explore the combi-
nation of different modal features and verify the influence of
various combinations on the model performance, this could
help other researchers make more effective decisions and
design models when dealing with similar problems and 3) our
model has simple structure and high precision.

II. METHOD

A. Stage 1 Single modality feature strengthen
The modal features contain different information. Directly

fusing information from these modalities may cause confusion
or information loss, so it is necessary to first strengthen single-
modality features before fusion. Therefore, we independently
calculate attention for each modality to maintain distinct
information between each modality. For this aim, we propose
the dual positional embedding self-attention (DPES) module,
which embeds the positions twice and it can maintain distinct
information to enhance the model’s timing processing ability.
Stage 1 consists of three DPES, and it can be represented by
the following formula:

Fi = DPES(Xi) where i = r, o, f (1)
The inputs Xi represent the initial features of modality i. The
outputs Fi are the features processed by DPES. r, o, f stand
for RGB, OBJ and FLOW, respectively. In the DPES module,
the computation of MHSA follows its original authors [18].

B. Stage 2 Parallel MIF
The existing modal fusion methods ignore the differences

and correlations between different modalities, this may result
in missing information and redundant information in the
model. Therefore, we propose two MIF mechanisms. In this
section, we first introduce Parallel MIF (as illustrated in
Figure 2), which assign equal status to the three modalities,
enabling them to take turns providing query and attending
to the information from each modality. The bidirectional
correlation structures of Parallel MIF can make the model
better learn the relationships between two modalities and has
the ability of error correction because each group in Stage
2 exhibits bidirectional correlation. If an error occurs in one
direction, the other direction can be corrected. For instance, in

the two DMF modules of Group R-O, the roles of Fo, and
Fr are reversed.

DMF is based on multi-head cross-attention (MHCA).
We fuse the two modalities in such a way that one modal
features provide query to MHCA while the other modal
features provide key and value. The inputs and outputs of
MHCA are given by the following formula:

Fij = MHCA(Fi,Fj) where i, j ∈ {r, o, f} and i ̸= j
(2)

where Fij are the fusion features of modalities i and j. Fi

provide Q, Fj provide K and V. The calculation of MHCA
is similar to MHSA, except that the providers of Q, K, and
V features are not the same.

After obtained the outputs Fij of MHCA, we add residual
and LayerNorm to it to get the outputs F

′

ij of DMF .

DMF (Fi,Fj) = LN(Fij + Fi) = F
′

ij (3)
Finally we sum the outputs of the six DMF modules to get
the final value:

Fs =
∑

F
′

ij (4)
The Parallel MIF has a bidirectional error correction ability,
resulting in strong robustness. It can adapt well to different
datasets and does not require us to consider which modal data
has a strong modal correlation.

C. Optional Stage 2 Progressive MIF
We provide an Optional Stage 2 Progressive MIF, which

can replace Stage 2. Parallel MIF and Progressive MIF have
their own advantages. Parallel MIF is more robust and less
thoughtful. Progressive MIF is more flexible and can achieve
higher precision.

In this stage, we take into account the differences among
each modality and assign different weights to the information
they provide. Firstly, we fuse the static features Fr and Fo by
utilizing Fr as the primary source of information for the query
and residual. During this process, Fr play the most crucial
guiding roles. Then, we deploy the fused static features Fn as
the query to combine dynamic features Ff . The process is as
follow formula:

DMF (Fr,Fo) = Fn (5)
DMF (Fn,Ff ) = Fs′ (6)



TABLE I
THE COMPARISON RESULTS WITH THE STATE-OF-THE-ART.

Method
EPIC-Kitchens EGTEA Gaze+

Top-5 Acc M.Top-5 Rec
Avg.

Top-5 Acc M.Top-5 Rec
Avg.

VERB NOUN ACT VERB NOUN ACT VERB NOUN ACT VERB NOUN ACT
ATSN[2] ECCV’2018 77.30 39.93 16.29 33.08 32.77 7.60 34.50 90.60 69.94 40.53 69.24 57.02 31.61 59.82

FN[7] WACV’2018 74.84 40.87 26.27 35.30 37.77 6.64 36.95 91.05 71.64 60.12 76.73 63.59 49.82 68.83
RULSTM[5] ICCV’2019 79.55 51.79 35.32 43.72 49.90 15.10 45.90 93.11 77.48 66.40 82.07 73.30 58.64 75.17

TAB[17] ECCV’2020 79.47 51.93 34.60 44.15 51.88 16.17 46.37 92.84 78.58 67.51 83.12 75.17 62.46 76.61
IRNN[19] TIP’2020 79.70 50.20 33.20 - - - - - - - - - - -

HA[9] 2021 73.94 41.29 25.18 35.87 36.39 14.64 37.89 86.06 71.46 59.89 78.90 69.89 58.22 70.74
HRO[12] CVPR’2022 81.53 54.51 37.42 45.16 51.78 17.80 48.03 - - 71.46 - - - -

Parallel MIF 80.89 57.38 39.40 47.37 57.65 17.90 50.10 96.23 88.28 79.89 90.74 85.98 75.70 86.14
Progressive MIF 80.93 57.76 39.80 47.99 59.04 17.80 50.55 96.24 88.24 80.22 90.74 86.24 76.54 86.37

TABLE II
THE COMPARISON RESULTS WITH DIFFERENT FUSION STRATEGIES.

Method
EPIC-Kitchens EGTEA Gaze+

Top-5 Acc M.Top-5 Rec
Avg.

Top-5 Acc M.Top-5 Rec
Avg.

VERB NOUN ACT VERB NOUN ACT VERB NOUN ACT VERB NOUN ACT

Early fusion 80.27 50.46 33.27 45.47 51.38 14.35 45.87 96.11 87.95 79.61 90.19 85.42 75.43 85.79
Late fusion 80.09 55.31 39.06 41.01 53.50 14.21 47.20 95.35 85.64 78.57 86.62 81.08 70.62 82.98

Hybrid fusion (r-o) 80.93 52.03 36.63 44.34 50.01 14.16 46.35 - - - - - - -
Hybrid fusion (r-f) 80.73 56.60 38.94 43.25 56.49 15.53 48.59 - - - - - - -
Hybrid fusion (f-o) 80.07 48.81 33.19 40.71 46.60 11.22 43.43 - - - - - - -

Parallel MIF 80.89 57.38 39.40 47.37 57.65 17.90 50.10 96.23 88.28 79.89 90.74 85.98 75.70 86.14
Progressive MIF 80.93 57.76 39.80 47.99 59.04 17.80 50.55 96.24 88.24 80.22 90.74 86.24 76.54 86.37

Given that Fr and Fo are static features and possess high
correlation due to both representing object-related information.
After obtaining the static fused features Fn that combine rich
information, we use Fn to combine dynamic features Ff and
fuse them to complement each other’s information.

D. Stage 3 Action anticipation
In the Stage 3 Action anticipation, the outputs are final an-

ticipation results. The following formula serves as an example
of using Fs as inputs for Stage 3.

Fm = Linear(LN(MLP (Fs) + Fs)) (7)
The multi-layer perceptron increases the number of trainable
weights, and its hierarchical representation learning improves
the model’s generalization ability. Furthermore, the residual
structure preserves the original information and accelerates
convergence during the training process.

III. EXPERIMENTS
A. Experiment setup

Datasets. EPIC-Kitchens (EPIC) [2] is a dataset that con-
tains 125 verb classes and 352 noun classes. EGTEA Gaze+
(EGTEA) [11] has 19 verb classes, 51 noun classes and 106
action classes. EGTEA is official split into three parts. We
report the average of the three splits. For fairness, we use the
pre-extracted modal features by [5] in the two datasets and
conduct tests on validation sets which are split by [5].

Fusion details. EGTEA only provides two modalities: RGB
and FLOW, so there are only two DMF modules in Stage 2
on EGTEA, and in the two modules, Fr and Ff take turns

to provide query. In Optional Stage 2, we use Fr provide the
query of the first DMF module and the key and value of the
second DMF module.
B. Comparisons to previous works

Comparisons with the state-of-the-art. We compare our
model to the state-of-the-art in Table I, and the results demon-
strate that our model achieves competitive performance. The
anticipation time τa is 1s. ‘Avg.’ represents the average value
of all metric results for each method. Most existing methods
employ late fusion and do not thoroughly investigate the
relationships between features from different modes. Features
across these modes contain complementary information, and
we integrate them interactively to obtain richer features rep-
resentation and a more comprehensive understanding of the
scene. Among our two methods, ‘Progressive MIF’ shows
superior overall performance compared to ‘Parallel MIF’.
However, ‘Parallel MIF’ still has its advantages and signifi-
cance. The parallel method is more robust and assigns equal
importance to all modalities, eliminating the need to consider
which modality should be given more weight, even when
applied to other datasets.

Comparisons with different fusion strategies. To verify
that interactive fusion is more effective than other fusion
methods, we conducted comparisons with different fusion
strategies and the results are shown in Table II. For fairness,
during the comparisons, other structures of our model re-
mained unchanged. In the table, ‘Hybrid fusion (r-o)’ denotes
the two features in parentheses undergoing early fusion and



TABLE III
THE TOP-5 ACTION ACCURACY (%) RESULTS ON DIFFERENT ANTICIPATE TIME τa .

Method
EPIC-Kitchens EGTEA Gaze+

2 1.75 1.5 1.25 1 2 1.75 1.5 1.25 1

ED[6] BMVC’2017 21.53 22.22 23.20 24.78 25.75 45.03 46.22 46.86 48.36 50.22
FN[7] WACV’2018 23.47 24.07 24.68 25.66 26.27 54.06 54.94 56.75 58.34 60.12

RU-LSTM[5] ICCV’2019 29.44 30.71 32.33 33.41 35.32 56.82 59.13 61.42 63.53 66.40
SRL[16] TPAMI’2021 30.15 31.28 32.36 34.05 35.52 59.69 61.79 64.93 66.45 70.67
HRO[12] CVPR’2022 31.30 32.67 34.26 35.87 37.42 60.12 62.32 65.53 67.18 71.46

Parallel MIF 39.24 39.32 39.02 38.82 39.40 79.73 79.70 79.51 79.94 79.94
Progressive MIF 39.58 39.58 39.28 39.26 39.80 79.90 79.91 79.87 80.15 80.22

the remaining feature being fused later. As shown in the
table, our methods achieve the best results. Compared to the
other methods, MIF is simpler and more effective. In our
methods, features are fused at a higher level to capture richer
semantic information compared with early fusion. Our meth-
ods better capture complex relationships between different
modal features compared with late fusion, leading to improved
generalization ability. And our model is not like hybrid fusion,
where the choice of strategy and parameters has a great impact
on the result.

Comparisons with different anticipation time τa. The
results in Table III demonstrate that our model significantly
outperforms existing methods for various anticipation times.
Unlike previous methods, our method’s action accuracy does
not decrease as the anticipation time lengthens. This suggests
that our model is better suited for long-term anticipation.
The main reason is the complementarity of information from
various modalities in interactive fusion. Interactive fusion is
interactively fused at different information level, and it can
make full use of multimodal information to reduce the error
rate of model attention. So that they are not susceptible to
the expected time, even for long-term predictions, the model’s
accuracy does not decline substantially.

TABLE IV
THE TOP-1 ACTION ACCURACY (%) RESULTS ON EGTEA, τa IS 0.5S.

Method
Top-1 Acc

VERB NOUN ACT
AVT[8] ICCV’2021 51.70 50.30 39.80

AFFT[20] WACV’2023 53.40 50.40 42.50

Parallel MIF 58.36 59.00 47.99
Progressive MIF 58.16 59.25 48.48

Comparisons of the top-1 action accuracy. In Table IV,
we present the top-1 accuracy results at τa = 0.5 on the
EGTEA dataset, indicating that our model still has a significant
advantage in top-1 action accuracy over previous methods.

C. Ablation Studies

In order to verify the rationality and effectiveness of the
parallel interactive fusion structure, we conducted ablation
experiments on it. Table V shows the action performance
results of different multimodal parallel interactive fusion man-
ners. ‘Fr-Q’, ‘Ff -Q’ and ‘Fo-Q’ are refer to the DMF
modules in Stage 2 with only Fr, Ff and Fo provide query,
respectively. ‘Diff-All’ means Q, K and V are different values
and selected from {Fr,Fo,Ff}. One of the reasons Parallel

TABLE V
THE ABLATIONS OF Parallel MIF.

Manner
EPIC-Kitchens EGTEA Gaze+

Top-5 Acc M.Top-5 Rec Top-5 Acc M.Top-5 Rec
Fr-Q 38.13 15.60 79.74 75.56
Ff -Q 38.94 16.32 80.08 75.45
Fo-Q 38.42 16.73 - -

Diff-All 38.70 16.45 - -

Parallel MIF 39.40 17.90 80.22 76.54

MIF performs better is due to the bidirectional correlation
between modes. In contrast, for ‘Fi-Q’ (i = r, o, f ), the
correlation is unidirectional, which may result in important
information being ignored. The ability to correct errors may
be limited. For EPIC, we have an additional reason because
EPIC has three modes data. The reason is as follow: when
Fr provide query, model does not explore the relationships
between Fo and Ff , leading to weakened the interactive
fusion of static and dynamic features. Regarding ‘Diff-All’,
we analyze that the result of ‘Diff-All’ is not as good as that
of our method because our method handles the correlation
between the two modes independently. In ‘Diff-All’, query,
key and value are provided from different modes, which may
confuse the model when learning the relationships between
modes.

TABLE VI
THE ABLATIONS OF Progressive MIF ON EPIC.

Manner Top-5 Acc M.Top-5 Rec
⟨O,R⟩ → F 38.07 17.27
⟨O,F ⟩ → R 38.90 16.48
⟨F,R⟩ → O 39.12 16.77
⟨F,O⟩ → R 38.52 17.55
⟨R,F ⟩ → O 39.40 17.06

⟨R,O⟩ → F 39.80 17.80

In order to verify the rationality and effectiveness of
Progressive MIF , we conducted ablation experiments on it.
Table VI presents the results of the action performance using
different multimodal progressive interactive fusion manners on
the EPIC. ⟨X,Y ⟩ → Z means in the first DMF module,
the features of X provide query, the features of Y provide
key and value. In the second DMF module, key and value
obtained by Z. In Table VI, the results of ⟨R,O⟩ → F
are better than others. We think the advantage of this design
is that Fo has stronger correlation with Fr, so learning the
relationships between Fr and Fo first helps to capture more
effective static information. Moreover, as Fr contains most of
the relevant information, Fr are used as the query in the first



DMF module, achieving the highest scores.
IV. CONCLUSION

In this paper, we propose two simple structured MIF mecha-
nisms, Parallel MIF and Progressive MIF. The Parallel MIF
possesses bidirectional correlation structures, which endows
it with stronger robustness. In contrast, the Progressive MIF
use static features to combine dynamic features to achieve
higher accuracy. We compare our proposed methods to the
state-of-the-art and other multimodal fusion methods, and the
experimental results show that our proposed methods achieve
superior performance on two large-scale datasets.
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