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Abstract—Human beings are social creatures. We routinely
reason about other agents, and a crucial component of this
social reasoning is inferring people’s goals as we learn about
their actions. In many settings, we can perform intuitive but
reliable goal inference from language descriptions of agents,
actions, and the background environments. In this paper, we
study this process of language driving and influencing social
reasoning in a probabilistic goal inference domain. We propose
a neuro-symbolic model that carries out goal inference from
linguistic inputs of agent scenarios. The “neuro” part is a large
language model (LLM) that translates language descriptions to
code representations, and the “symbolic” part is a Bayesian
inverse planning engine. To test our model, we design and run a
human experiment on a linguistic goal inference task. Our model
closely matches human response patterns and better predicts
human judgements than using an LLM alone.

I. INTRODUCTION

Humans are deeply social creatures, finely attuned to the
inner lives of other people [40, 30, 36]. We not only think, but
think routinely about each other. We imagine what someone
is trying to accomplish and why are trying to accomplish it;
we try to parse what someone really believes and whether
they might be mistaken; and we anticipate people’s ultimate
goals and upcoming actions, stepping in to assist or sometimes
even to try to hinder them. This capacity for social reasoning,
broadly, is abstract (we can observe someone’s actions in
the world, but cannot directly see what they think or want)
and relies on a fine grained knowledge of distinct but highly
interrelated mental states within others (we know that some-
one’s beliefs, desires, and goals relative to the world itself all
collectively influence what they might choose to do.)

This paper considers how language can inform social
reasoning, with a particular focus on understanding lan-
guage about people’s actions, plans, and goals. Language
is an especially powerful means of conveying the abstract,
interrelated nature of concepts about agents in the world—we
can talk about someone’s actions (I saw Annie heading into
the living room), directly convey their mental states (Annie
desperately wants a toy in there), describe relevant but abstract
aspects of the world in which they act (that cupboard Annie
is trying to open is locked inside), or even pose the questions

we want others to reason about (which toy do you think she
wants the most?). Language about any one of these aspects
informs how we might reason about someone else in holistic
ways, changing our understanding and downstream predictions
about what they might know, want, or do.

Empirical evidence suggests that we think intuitively about
each other as largely rational, goal-directed intelligent agents
[12, 11, 4, 3]. Within computational cognitive science and AI,
a considerable body of prior work formalizes these intuitions
by modeling agents as rational actors and planners who
choose actions to achieve specified goals or optimize rewards,
and in turn models many inferences about mental states as
inverse planning from observations of actions back to their
latent goals, utility functions, or beliefs about world states
[15, 5, 46, 43]. Despite considerable successes in predicting
distinct human inferences and modeling cooperative behavior
in human-computer interactions [8, 25, 2, 6, 41, 33], these
approaches—largely non-linguistic models that draw infer-
ences from images or demonstrations of agent actions—face
scalability and specification challenges inherent to the abstract,
complex, and interrelated nature of social reasoning tasks.
Modeling agents as goal-directed planners requires implicitly
or explicitly representing the world model they are planning
over, which is often precisely defined a priori (as in Baker
et al. [5] and Zhi-Xuan et al. [46]) or learned from expensive
exploration (as in Lian et al. [21]). Inferring mental states, or
even posing the task itself, is challenging when framed as an
inductive problem from images and demonstrations alone (as
in Shu et al. [34]).

In part due to these challenges, the recent advances made
by large language models (LLMs) have driven an explosion of
interest in how these models can be used to plan [38] or draw
social inferences [7, 32] from language—they suggest a new
frontier of cognitive models and AI systems that can leverage
language to specify abstract world knowledge, domain-specific
world dynamics, and direct information about agents and their
mental states. However, early efforts to apply LLMs directly
to social reasoning problems often take a highly simplified
approach to evaluating their capacity for social reasoning or
their “theory of mind”, drawing broad conclusions based on



Fig. 1: Overview of our model, the Neuro-Symbolic Inverse Planning Engine (NIPE), which reasons about linguistic goal
inference scenarios. (Left, green) We design and measure human judgments on a linguistic goal inference domain (inspired
by [46], which asks about the final goal of a participant on a complex “gameshow” obstacle course involving trophies behind
locked doors. Inferring goals requires reasoning jointly about language that describes the overall world configuration, specific
world dynamics, and the agent’s actions. Our model works by first using a large language model to translate language into
symbolic program semantics that collectively condition a probabilistic generative model over possible environments and agents
(Middle, yellow), and answers queries via Bayesian inverse planning (Right) in the conditioned probabilistic model, inferring
likely goals using a nested planner to model the agent.

a narrow set of templated cognitive tasks (like the famous
“Sally Anne tasks”). Other evaluations caution against drawing
general conclusions from such restricted task settings, pointing
out that modifications and extensions beyond these simple
problem settings can produce counterintuitive results that con-
tradict the holism and generality of these inferences [32, 37];
and several recent evaluations suggest that robust planning in
general remains an outstanding challenge for large language
models [38, 7]. Several recent approaches seek to address these
challenges by augmenting LLMs with interfaces to external
modules for representing and simulating complex aspects of
world state, particularly using classical AI representations and
engines for forward planning [10, 22, 24]. Emulating human-
like social reasoning and knowledge, however, requires models
that can robustly draw unified inferences about actions, mental
states, and the world [42], relating plans and beliefs in holistic,
flexible, and ideally interpretable and safely deployable way to
language; and linguistic evaluations that move in turn towards
the richness and breadth of human-like social reasoning,
flexible and extensible enough to incorporate these interrelated
aspects of human mental states and world knowledge.

We focus specifically in this paper on understanding lan-
guage that describes inverse planning and goal inference
problems—we consider how language can convey information

about the world itself, and the actions within it, in order
to drive inferences about the unseen goals motivating these
actions. We make the following contributions:

1) We introduce a new model, the Neuro-symbolic Inverse
Planning Engine (NIPE) that leverages LLMs to trans-
late language into program expressions that composi-
tionally construct and condition a probabilistic gener-
ative model over agents and environments, then uses
Bayesian inverse planning to perform goal inference
over this symbolic representation, expanding upon the
paradigm of rational meaning construction for language-
informed cognition [42].

2) To evaluate this model, we compare our model against
human social reasoning on a linguistic inverse planning
domain inspired by prior cognitive work in social cog-
nition [46]. We design this domain to require jointly
reasoning about agent actions and varying information
about the world itself.

3) We find that our model well-predicts human judgments
across a variety of distinct social reasoning scenarios.
We also find that our model outperforms LLM baselines
used to directly perform the same goal inference tasks.
We find that the largest LLM alone (GPT-4 [26]) cor-
relates moderately well with certain human judgments



on this domain, particularly on simpler scenarios. We
discuss trends between LLMs of different sizes and on
different task variants in our stimuli.

II. LINGUISTIC INVERSE PLANNING TASKS AND HUMAN
EXPERIMENT

We begin by describing the domain of tasks and human
experiment we use throughout this paper, to provide intuition
for the modeling experiments that follow. We construct a
domain of linguistic inverse planning stimuli designed to
evaluate how humans and models infer the goals of agents
acting within varied environments. We design stimuli to
convey varying information about the world configuration and
dynamics in which agents behave, as well as the observed
actions of agents with unknown goals.

Our tasks are inspired by the spatial navigation stimuli used
in prior social reasoning experiments [46, 2]. Our experiments
adapt this basic domain into a set of linguistic inverse planning
stimuli, and introduce a range of variations designed to test
distinct world dynamics, spatial information, and vague or
incomplete information about agent actions conveyed linguis-
tically.

A. Planning and inverse planning concepts in the Gameshow
Domain

Each stimuli in our experiment (table I) begins with a
description of a “gameshow” scenario in which a player is
trying to reach one of several goal trophies placed around
an obstacle course. This obstacle course also includes locked
doors that can only be unlocked with keys placed around the
course, and which additionally require multi-step reasoning
about an agent’s longer term plans. Based on each scenario
description, which includes varying information about the
particular obstacle course and the actions of an agent within
it, we pose a linguistic goal inference query: which of the
possible trophies do you think the player trying to reach?

We design each stimulus to span several core conceptual
categories relevant to reasoning about agents and their actions
in the world (table I, top), including:

• World configuration: information about goal trophies,
keys, and their attributes, as well as their relative loca-
tions, at differing levels of specificity.

• Abstract world dynamics: causal dynamics within the
environment, such as rules determining which keys can
open which doors.

• Agent actions: descriptions of an agent’s behavior before
they reach the goal, like picking up keys or walking in
different directions towards keys or trophies.

B. Task variants

We design four distinct variants of gameshow stimuli for
a total of n=18 stimuli, which vary the complexity of the
specified world configuration, the world dynamics, and the
type of observed agent actions (excerpts from stimuli in each
variant are shown in table I, bottom):

• Generic keys: Goal trophies are placed behind locked
doors, and must be unlocked by keys placed around the
obstacle course. Any key on the course can be used to
open any other door.

• Same-colored keys: This variant adds additional com-
plexity in the world dynamics. Keys and doors have
colors. Doors can only be unlocked by keys that are the
same color as the door.

• Different-colored keys: In this variant, doors can only
be unlocked by keys that are a different color from the
door.

• Spatial: This variant contains specific spatial descriptions
of the obstacle course and agent actions. Due to the added
spatial complexity, in these environments, there are no
keys or doors; agents can walk freely towards various
goal trophies.

C. Human experiment

We collect and evaluate human judgments on these goal
inference tasks. We recruit a total of n=46 participants from
Prolific 1; each viewed a random batch of 7 stimuli from a
specific task variant, and for each stimulus, produced goal
inference judgements about each possible goal trophy on a
1-7 Likert scale (1: definitely not this trophy; 7: definitely
this trophy). Scenarios were presented for a fixed amount
of time before an answer was permitted (90 seconds in the
Spatial condition; 45 seconds in the others). Each scenario was
seen by between 14-16 participants. Participants were native
English speakers from the USA/UK.

III. OUR MODEL: THE NEURO-SYMBOLIC INVERSE
PLANNING ENGINE (NIPE)

We now introduce our model, the Neuro-Symbolic Inverse
Planning Engine (NIPE). While we focus on goal inference
tasks, we describe a general framework for conditioning on
the diverse range of linguistic information in these stimuli—
varying information about the spatial environment, world
dynamics, and agent actions—that supports inferences about
agents based on a principled, probabilistic framework for
Bayesian inverse planning.

Our core contribution is to show how we can approach
complex linguistic scenarios about agents by leveraging struc-
tured, symbolic representations and inference methods (mod-
eling agents as explicit planners, and performing principled
Bayesian inference over complex models) from the existing
cognitive and AI social reasoning literature (eg. [5, 46]). We do
so by translating from language into program expressions
that condition a symbolic generative model over agents
and environments, instantiating the paradigm of rational
meaning construction for language-guided cognition [42]. This
approach also addresses an important open challenge for prior
non-linguistic (inverse) planning models: We can condition
on abstract information about the world that is specified in

1We exclude 6 participants as less than 30% of their MAP results agreed
with consensus; i.e. they disagree with the majority on which goal is the most
likely for at least 5 out of 7 stimuli.



Linguistic planning and inverse planning concepts across tasks

World configuration There are three trophies placed through this obstacle course: gold, silver, and bronze; The gold trophy is
currently 5 steps East of Alice; The silver trophy is behind 1 door.

World dynamics On this course, each lock can only be opened by a key that is the same color as that lock; In this game, players
lose points if they pick up more keys than needed.

Agent actions You see Alice picking up a green key; You see Alice walking a step towards the South; In this game, players
lose points if they pick up more keys than needed.

Goal inference Considering each of the possible trophies on this course, how likely is it that Alice is trying to reach this
trophy?

Task variations

Generic Keys There are three trophies placed throughout this obstacle course: gold, silver, or bronze. To get to the gold
trophy, you need to unlock 2 different doors. To get to the silver trophy, you need to unlock 1 door. The bronze
trophy isn’t behind a door. Keys to unlock the doors are placed around the obstacle course. All of the keys
on this course work on all of the locks. You see Alice pick up 1 key.

Same-Colored Keys There are three trophies placed throughout this obstacle course: gold, silver, or bronze. The gold and silver
trophies are both located behind a yellow door. To go to the bronze trophy, you need to go through a red door.
On this course, each lock can only be opened by a key that is the same color as that lock. You see Alice
pick up a red key.

Different-Colored Keys There are three trophies placed throughout this obstacle course: gold, silver, or bronze. The gold and silver
trophies are both located behind a green door. To go to the bronze trophy, you need to go through a red door.
On this course, each door can be unlocked by any key that is a different color than the door. You see
Alice pick up a red key.

Spatial There are three trophies placed throughout this obstacle course: gold, silver, or bronze. Alice is a participant
on this course. The gold trophy is currently 5 steps East of Alice. The silver trophy is 3 steps South from
her. The bronze trophy is 5 steps further West of the silver trophy. You see Alice walking a step towards
the South.

TABLE I: example language from the linguistic “gameshow” goal inference domain. (top) each scenario contains language that
spans a variety of interrelated concepts relevant to the final goal-inference query, ranging from information about the particular
environment configuration to varying information about an agent’s actions. (bottom) we design four distinct task variants that
vary in complexity and type of the environment description and the spatial details of the agent’s actions.

language, such as information about where objects are located
or which keys open which doors.

Our model (shown in schematic form in fig. 1) modularly
decomposes the problem of goal inference from language
into three general subproblems: language-to-code translation,
which we instantiate generally by using a LLM as a few-shot
semantic parser (similar to [44, 23, 10, 42]); the construction
of a probabilistic generative model over agents and environ-
ments from language; and goal inference through Bayesian
Inverse Planning in this probabilistic model (using an nested
planning and inference algorithm like that in [46]). We now
describe each problem in detail.

A. Language-to-code translation using LLMs

Following Wong et al. [42], the crux of our approach is to
show how the different kinds of language in our scenarios can
each be translated into program expressions that collectively
construct and condition a holistic probabilistic model. We
begin, however, by briefly describing the language-to-code
translation itself, which we implement by using LLMs to
translate sentences into code, which compositionally construct
a symbolic model over an extended, multi-sentence linguistic
scenario (see fig. 1, LLM Language to Code).

Our translation approach leverages the few-shot prompting

capabilities of LLMs trained jointly on language and code.
We choose GPT-3.5 [27] specifically to show that a smaller
LLM can be used to implement this more restricted task, rather
than using the LLM itself to internally represent and reason
over these scenarios. Future work should explore whether even
smaller and more restricted language-to-code models can be
used. Our approach builds on the methods used in Zhang
et al. [44], which uses an LLM to translate language into
probabilistic programs, along with other work showing that
LLMs can translate language into code when given paired
few-shot examples [22, 42]. For each stimulus, we construct a
prompt containing 2-3 randomly sampled examples of paired
language and code from held out examples on our domain.
Models were sampled with a temperature of 1.2. To ensure
robustness, we rejection sample translations to ensure that they
pass a number of syntactic and semantic tests (e.g., to ensure
that translated code is valid and executable.)

B. Constructing a probabilistic generative model over agents
and environments from language

Now we describe how the different kinds of information
relevant to this domain can be each translated into different
kinds of code within a unifying generative model. Following
Zhi-Xuan et al. [46], we model information about the world



dynamics, such as action preconditions and effects, using the
Planning Domain Definition Language (PDDL), a standardized
representation language widely used in robotics and automated
planning [1], and which can b extended with modular se-
mantics to efficiently represent spatial domains such as ours
[14, 45].

While prior work has considered how different subproblems
related to planning can be extracted via language-to-code
[10, 23, 35], our aim here is to translate language not only
to distributions over possible worlds — i.e. possible spatial
layouts and domain rules — but also to inferences over an
agent’s actions. We describe each aspect of translation below:

a) Conditions on spatial environments: First, we prompt
LLM to translate sentences like “The bronze chest is located
behind a red door.” into a CONDITION statement that de-
scribes this arrangement. We then sample concrete grid-world
maps from a generative model over maps that satisfy this.

To ensure that maps are valid for our environment, we define
and condition a relatively restricted generative model over
possible maps and trophy placements that ensures that these
basic validity conditions are met. Each sampled map from this
generative model is a concrete PDDL scene representation that
describes the locations of the initial agent, objects, and their
attributes.

b) Conditions on domain rules: Now, consider sentences
like “Each door can be unlocked by a key with the corre-
sponding color.” These can be straightforwardly translated into
operator definitions expressed in PDDL (see Figure 1), which
define an action and its necessary parameters, preconditions
for trying this action, and effects on the environment.

Collectively, the scene representation and the domain rules
define a complete, concrete planning domain defined in PDDL.
As in Zhi-Xuan et al. [46], this domain model is nested
within a larger Bayesian model over agents acting in this
environment. The benefit of using PDDL is that we can
easily model the agents themselves using classical planning
algorithms over the PDDL domain representation and we
can easily transfer this model to a different problem setup
by modifying the operator definitions or simply choosing a
different pre-defined PDDL domain.

c) Conditioning a generative model over agent subgoals
and actions from language: Finally, we consider how to
translate sentences that describe agents’ actions into conditions
on a model over agents. We distinguish between language like
“You observe Alice picking up two keys” which is treated as
a condition on subgoals, and “You observe Alice walking 3
steps East.”, which is treated as a low-level action sequence.

C. Goal Inference through Bayesian Inverse Planning

Once we have an initial PDDL environment representation
s0 and a sequence of agent actions a1:t, we can perform
Bayesian inverse planning to infer a posterior distribution over
goals g given actions a1:t and the initial state s, which is
proportional to the joint distribution over goals and actions:

P (g|s0, a1:t) ∝ P (g, a1:t|s0) = P (g|s0)P (a1:t|g)

Here P (g|s0) defines the prior distribution over possible goals
in the initial state s0, and P (a1:t|g) is a model of how the agent
selects actions a1:t given a particular goal g. For the goal prior,
we model agents as being more likely to pick up goals that
are closer to them, as determined by the cost C(g, s0) of the
shortest plan to each goal:

P (g|s0) ∝ 1
C(g)

To model actions, we assume P (a1:t|g) decomposes into the
probability of selecting an action at at each state st, given by
a Boltzmmann-rational policy π:

P (a1:t|g) =
∏t

τ=1π(aτ |st, g)

π(at|st, g) =
expβQg(st, at)∑
a′
t
expβQg(st, a′t)

where Qg(st, at) denotes the (negative) cost of the reaching
the goal g by taking action at from st, and β is a rationality
parameter, also called the inverse temperature. This policy
models agents as approximately rational in how they act,
since actions which reach the goal more quickly (higher Qg)
are more probable, with higher values of β leading to more
optimal actions. Although this model does not account for
forms of approximate rationality [13, 31, 2], it is a widely used
choice in (Bayesian) inverse planning and inverse reinforce-
ment learning that can account for non-systematic deviations
from optimality [29, 47, 4]. To compute Qg for each state st
and action at encountered during inference, we use A* search
as an optimal-cost planner in the PDDL domain to determine
the cost of the optimal plan.

With these components of the model specified, goal infer-
ence can be performed exactly by computing the joint proba-
bility P (g, a1:t|s0) of each possible goal g with the observed
sequence of actions a1:t, which can then be normalized to
obtain the posterior distribution P (g|s0, a1:t).

IV. MODEL EXPERIMENTS

We compare our model with human judgements on the
gameshow domain of social reasoning tasks. We also evaluate
two LLM baselines to assess the value of an explicit Bayesian
inverse planning model.

For our model, we simulate answers to each goal inference
stimulus (which trophy will Alice pick up?), outputting a poste-
rior probability over all of the possible trophies (probabilities
sum to 1 over all trophies). For each stimulus, we translate
the linguistic scenario description of the world configuration,
world dynamics, and agent behavior into symbolic conditions
on the generative model (by sampling from the LLM and
rejecting invalid code), and perform goal inference with the
generated code to calculate the posterior over the trophies.
Since goal inference can be performed without sampling, and
since the space of maps consistent with a linguistic description
is highly restricted, we found in pilot experiments that our
model showed limited variability across LLM and generative
model samples. Therefore, for each stimulus, we computed
our results using a single valid sample of PDDL domain rules
and spatial environments.



We also conduct two baseline experiments using two dif-
ferent LLMs (gpt-3.5-turbo-0301, the dialogue-tuned
variant of GPT-3.5 [27], and gpt-4-0314, the March snap-
shot of GPT-4 [26]) to directly provide goal inference judg-
ments for each stimulus. We assess LLMs using exactly the
same conditions as the human experiment, using a zero-shot
prompt where the LLM is given the full linguistic experimental
set up (including instructions explaining the task) shown to
human participants, concatenated with the scene scenario and
query for each stimulus, and a short prompt specifying the
answer format. To account for answer variability, we sample
n = 30 answers for each stimulus, rejecting any answers that
are not in the correct format. Exact prompt formats can be
found in the Appendix.

V. RESULTS AND DISCUSSION

We evaluate our model and baselines in comparison to
human judgments, both across all of the stimuli (fig. 2) and
within each task variant category (fig. 3). We find that:

a) Our model (NIPE) correlates strongly overall with
human judgments across the goal inference experiment.:
We calculate correlations between the posterior probability
judgments produced by our model and the mean per stimulus
judgments (Likert scale ratings) across human subjects, and
find that our model is strongly correlated with human judg-
ments in the experiment overall (fig. 2, Our Model, R=0.927,
95% CI=(0.877, 0.953)). All 95% CI are bootstrap sampled
confidence intervals each with 1000 samples.

b) The largest LLM baseline (GPT-4) correlates mod-
erately with human judgments overall; GPT3.5 correlates
poorly.: We additionally calculate correlations between LLMs
prompted directly to produce goal inference judgments (mean
over sampled LLM judgements for each stimulus, and the
mean over human judgments for each stimulus across par-
ticipants). In comparison to our model, we find that GPT-
4 correlates well, but more weakly, with human judgments
(fig. 2, GPT-4 Rating, R=0.658, CI=(0.403, 0.79)) overall, and
GPT-3.5 correlates much more poorly with human judgments
overall (fig. 2, GPT-3.5 Rating, R=0.100, CI=(-0.145, 0.361)).
These aggregate trends are better understood by examining
correlations between human judgments within each task vari-
ant, as we discuss next.

c) NIPE correlates strongly with human judgements
within each task variant; GPT-3.5 and GPT-4 are less robust to
complex world dynamics and spatial information.: Inspecting
trends within each individual task variant (fig. 3) provides
insight into when models deviate from humans.

NIPE consistently correlates with human judgments across
all task variants, from the simpler Generic stimuli to the
more complex Colored and Spatial stimuli (fig. 3, bottom). In
contrast, on the more complex tasks—particularly the Colored-
Different variant, which specifies a new, counterintuitive rule
particular to this domain (doors can only be opened by keys
that are a different color from the door), and the Spatial
variant, which requires considering how an efficient, path-
planning agent would navigate towards their goal—the LLM

baselines show revealingly different performance in compari-
son to human reasoning.

As seen in fig. 3, GPT-3.5 actually correlates negatively
with human judgments on Colored-Different—it both ignores
the stated rule about the different colored keys and appears
to make the opposite, incorrect assumption, perhaps based
on simpler color-based pattern matching; and shows nearly
zero correlation with human judgments on the explicit Spatial
path-planning variant. In comparison, GPT-4 correlates well
with human judgments on both of the simpler task variants,
and shows a moderate (but positive) correlation on the Spa-
tial variant (though we discuss stimuli-specific failures next,
suggesting that GPT-4 may still be using simpler distance
heuristics rather than robustly modeling an efficient path-
planning agent.) On the Colored-Different domain, GPT-4 has
nearly zero-correlation, suggesting that it is highly uneven
in taking the specific rule about key colors into account—
as shown in fig. 3, it predicts human judgments well in some
cases, but produces nearly the opposite overall judgment in
others, suggesting it has ignored the rule.

d) Humans make fine-grained assumptions about agents
as rational planners; LLMs do not always do so.: Our model
explicitly reasons about agents as rational, goal-directed actors
and planners. Do LLMs do so as well? Qualitative analysis of
individual stimuli highlights subtle but important discrepancies
between human assumptions and LLM-based goal inferences
on the most complex Spatial stimuli. We highlight a represen-
tative example here:

There are three trophies placed throughout this obstacle course:
gold, silver, or bronze. Alice is a participant on this course. The
gold trophy is currently 2 steps East of Alice. The silver trophy is
3 steps South from her. The bronze trophy is 5 steps South from
her. You see Alice walking 4 steps South.

Both humans and our model strongly predict that Alice is
headed towards the bronze trophy on this domain. In contrast,
both the LLM baselines predict most strongly that Alice is
heading towards the silver trophy (perhaps because it is closer
to Alice), though in fact, humans tend to agree that because
she has walked past this trophy, as an efficient actor, this is
likely not her goal. We provide additional examples of similar
efficient-planning situations in the Appendix.

VI. CONCLUSION AND FUTURE DIRECTIONS

We conclude with several important avenues for future
work. First, while we evaluate all LLMs using a simple
prompting regime, future work should evaluate whether these
results are consistent or improve with other prompting and
evaluation methods such as chain-of-thought [39, 17], partic-
ularly on complex tasks such as those that invoke efficient
spatial path planning, which prior work also finds to be
an outstanding challenge for LLMs [9]. It is also possible
for LLMs to be biased by surface-level cues (e.g. in our
stimuli, they might be biased towards gold over silver trophies,
since the former are often considered more valuable). Future
experiments should control for these potential biases by testing
a wider diversity of prompts.



Fig. 2: Correlation between NIPE and baseline LLMs vs. human judgments, aggregated across the goal-inference stimuli.
Our model (Right) produces posterior probabilities over goals that correlate strongly overall with human judgments; GPT-4
correlates moderately overall (Middle) and GPT-3.5 (Left) correlates poorly across the tasks. Color-coded points show stimuli
from specific task variants.

Fig. 3: Correlations within specific task variants highlight more granular trends in model behavior. Our model (Bottom)
correlates strongly with human judgements across all four task variants. In comparison, the LLM baselines generally show
poorer performance on the more complex variants (the Color-Different variant, which introduces a new, counterintuitive rule
about the world dynamics; and the Spatial variant, which requires reasoning specifically about agents as efficient path planners.

Second, while NIPE adopts a Bayesian approach to social
inference, the process of language translation itself is per-
formed in a non-Bayesian “bottom-up” manner using LLMs.
Future work might explore a more fully Bayesian approach
that models how language itself is generated from symbolic
task representations, and perform posterior inference directly
from language. This might involve using LLMs as likelihood
models over language, as in Ying et al. [43], and also incorpo-
rate LLMs as common sense priors over representations of the
world [18, 20]. Among other benefits, this could enable more

controlled and robust translation of language to code [28, 19].
Finally, we designed the gameshow domain to permit future

extensions that describe a much broader range of social rea-
soning tasks that we could express linguistically. This includes
scenarios that specifically invoke agent belief [5, 37]; involve
boundedly rational agents [2]; and even involve multiple
agents collaborating or competing [16]. In addition, future
work could extend this domain to multimodal stimuli that
include both linguistic information and demonstrations or
images, e.g., to convey complex agent trajectories or envi-



ronment layouts [43]. The difficulty of the domain could also
be increased, expanding the number of objects, actions, and
planning steps in order to push the limits of language-to-code
translation. By building out this architecture, we hope to fully
reap the benefits of the both the neural and symbolic traditions
of AI, enabling flexible social inferences from a wide range of
naturally occurring linguistic stimuli, while producing outputs
that are structured, coherent, and robust [10].

REFERENCES

[1] Constructions Aeronautiques, Adele Howe, Craig
Knoblock, ISI Drew McDermott, Ashwin Ram, Manuela
Veloso, Daniel Weld, David Wilkins SRI, Anthony
Barrett, Dave Christianson, et al. PDDL — The
Planning Domain Definition language. Technical Report,
Tech. Rep., 1998.

[2] Arwa Alanqary, Gloria Z Lin, Joie Le, Tan Zhi-
Xuan, Vikash K Mansinghka, and Joshua B Tenen-
baum. Modeling the mistakes of boundedly rational
agents within a bayesian theory of mind. arXiv preprint
arXiv:2106.13249, 2021.

[3] Renée Baillargeon, Rose M Scott, and Lin Bian. Psy-
chological reasoning in infancy. Annual review of psy-
chology, 67:159–186, 2016.

[4] Chris L Baker, Rebecca Saxe, and Joshua B Tenenbaum.
Action understanding as inverse planning. Cognition, 113
(3):329–349, 2009.

[5] Chris L Baker, Julian Jara-Ettinger, Rebecca Saxe, and
Joshua B Tenenbaum. Rational quantitative attribution
of beliefs, desires and percepts in human mentalizing.
Nature Human Behaviour, 1(4):0064, 2017.

[6] Gagan Bansal, Besmira Nushi, Ece Kamar, Eric Horvitz,
and Daniel S Weld. Is the most accurate ai the best team-
mate? optimizing ai for teamwork. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 35,
pages 11405–11414, 2021.
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APPENDIX

A. Human linguistic inverse planning experiment

We include additional details on our human experiment.
We recruit a total of n=46 participants from Prolific 2; each viewed a random batch of 7 stimuli from a specific task variant,

and for each stimulus, produced goal inference judgements about each possible goal trophy on a 1-7 Likert scale (1: definitely
not this trophy; 7: definitely this trophy). Scenarios were presented for a fixed amount of time before an answer was permitted
(90 seconds in the Spatial condition; 45 seconds in the others). Each scenario was seen by between 14-16 participants.

For all scenarios, participants were asked “Now, considering each of the possible trophies on the course, please respond on
the 1-7 scale: how likely is it that the participant is trying to reach this trophy?” Likert scale options were as follows:

• “1 (Definitely not this trophy)”
• “2 (Very unlikely)”
• “3 (Somewhat unlikely)”
• “4 (Equally likely or unlikely)”
• “5 (Somewhat likely)”
• “6 (Very likely)”
• “7 (Definitely this trophy)”
Note, due to a mismatch, some participants in the Generic condition saw one stimuli from Different-Colored Keys

and vice versa. We reversed fixed this partway through the study.

B. LLM Baselines Experiment

We use the gpt-4-0314 model (i.e., a fixed, non-updatable checkpoint from March 14 for maximal reproducibility) in the
Chat Completion API. For each stimuli, we sample until we get 20 well-formed responses, rejecting samples that are not in
the correct format.

Example LLM Prompt for World Configuration

Input:
There are three trophies placed throughout this obstacle course: gold, silver, or bronze.
The gold trophy is behind a green door.
The silver trophy is behind a yellow and red door.
The bronze trophy is behind a red door.

Keys to unlock the doors are placed around the obstacle course. On this course, each door
can be unlocked by any key as long as it is of a different color than the door.

You see Alice picking up a red key. What would be the likely trophy Alice wants to get?"

output:
{"agent" : ["Alice"],
"goals" : ["gold", "silver", "bronze"],
"locations" : {"gold" : "Room A", "silver" : "Room B", "bronze" : "Room C"},
"obstacles" : {"Room A" : ["G"], "Room B" : ["Y", "R"],"Room C" : ["R"] },
"keys" : ["g","y","r"],
"max_obstacle" : 2,
"keys_per_door": 1,
"len_key" : 3,
"goal_count" : 3,
"observation_type": "has_objects",
"observation": "(exists (?k - key) (and (has Alice ?k) (iscolor ?k red)))"}

Example LLM Prompt for PDDL Domain Definition
In this example we constrain the model such that the LLM can only modify the unlock action of the PDDL domain definition.

Our goal is to show that with few-shot prompting in the color-same condition, the LLM can generalize to generate action
definition for color-different condition.

2We exclude 6 participants due to large deviations from average rating



input:

Alice is playing a treasure game to pick up exactly one trophy.
There are 3 trophies: gold, silver and bronze, located in room A, room C and room B.
There is 1 yellow and 1 green lock for Room A, a red lock for room B and a
yellow lock for room C.

Alice needs to unlock the locks to enter the rooms. Each lock can be unlocked
with a key with the same color. Each key can only be used once.

You see Alice go over to pick up a red key.

It’s unclear what Alice would do next.

output:

(:action unlock
:parameters (?a - agent ?k - key ?d - door)
:precondition (and (has ?a ?k) (locked ?d)

(exists (?c - color) (and (iscolor ?k ?c) (iscolor ?d ?c)))
(or (and (= (xloc ?a) (xloc ?d)) (= (- (yloc ?a) 1) (yloc ?d)))

(and (= (xloc ?a) (xloc ?d)) (= (+ (yloc ?a) 1) (yloc ?d)))
(and (= (- (xloc ?a) 1) (xloc ?d)) (= (yloc ?a) (yloc ?d)))
(and (= (+ (xloc ?a) 1) (xloc ?d)) (= (yloc ?a) (yloc ?d)))))

:effect (and (not (has ?a ?k)) (not (locked ?d)) )
)

C. An example of LLM baseline result

Here we provide an example of GPT-4’s response in the baseline condition on the Color-different task variant.

input:

There are three trophies placed throughout this obstacle course:
gold, silver, or bronze.

The gold and silver trophies are both located behind a yellow door.
To go to the bronze trophy, you need to go through a red door.

Keys to unlock the doors are placed around the obstacle course.
On this course, each door can be unlocked by any key that is a different
color than the door. For example, yellow keys cannot unlock yellow doors,
but can unlock doors in green or red.

In this game, players lose points if they pick up more keys than needed.
You may assume that players will use all the keys they pick up.

Alice is a participant on this course. You see Alice pick up a yellow key.

It’s unclear what Alice would do next.

How likely is Alice picking up the trophies? Please rate from 1 to 7
and explain.

output:



Gold Trophy: 6
Silver Trophy: 6
Bronze Trophy: 1

Explanation:

Since Alice has picked up a yellow key, she can now unlock either
the gold or silver trophy, since both are located behind a yellow
door. This makes it quite likely that she will pick up one of those
two trophies (rating them both at 6).

However, picking up a yellow key means she cannot unlock the red
door, which leads to the bronze trophy. Therefore, it is very unlikely
that Alice will pick up the bronze trophy (rating it 1).

It is clear from this example that GPT-4 shows unsatisfactory understanding of the setup of the Color-different variant. It
is stated that yellow keys cannot unlock yellow doors, so it is unlikely that Alice would pick up the gold or silver trophy,
but GPT-4 still judges these two possibilities to be highly likely. On the other hand, both humans and our NIPE model assign
significantly more likelihood to the bronze trophy (and roughly equal low likelihoods to the gold and silver trophies) in this
example.
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