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Abstract—Value alignment is essential for building AI systems
that can safely and reliably interact with people. However, what
a person values—and is even capable of valuing—depends on
the concepts that they are currently using to understand and
evaluate what happens in the world. The dependence of values
on concepts means that concept alignment is a prerequisite for
value alignment—agents need to align their representation of
a situation with that of humans in order to successfully align
their values. Here, we formally analyze the concept alignment
problem in the inverse reinforcement learning setting, show how
neglecting concept alignment can lead to systematic value mis-
alignment, and describe an approach that helps minimize such
failure modes by jointly reasoning about a person’s concepts
and values. Additionally, we report initial experimental results
with human participants showing that humans reason about the
concepts used by an agent when acting intentionally, in line with
our joint reasoning model.

I. INTRODUCTION

People’s thoughts and actions are fundamentally shaped by
the concepts they use to represent the world and formulate their
goals. Imagine watching someone waiting to cross a busy inter-
section. Making sense of their behavior requires understanding
their representation of things like “the crosswalk”, “the road”,
“the bike lane”, and “the right of way”. For instance, it is
important to take into account whether someone understands
or is aware of the part of the street designated the “bike
lane” while they wait since otherwise their intentions could
be misinterpreted (e.g., a naive observer might think someone
standing in the bike lane is trying to get hit by a bicycle).
Yet, current approaches to inferring human goals, rewards, and
values (e.g., standard inverse reinforcement learning [1] and
value alignment [3]) largely neglect the possibility that an
observer and actor can have misaligned concepts. Our goal in
this work is to formally state the problem of concept alignment,
begin to explore algorithmic solutions, and compare these
solutions to human judgments.

To formalize concept alignment, we draw on the recently
proposed framework of value-guided construal [6], which pro-
vides a computational account of how humans form simplified
representations of problems in order to solve them. A construal
is a particular interpretation of a problem in terms of a set of
concepts and related causal affordances: for example, if one
understands the concept of the bike lane and includes it in
their current construal, they are aware of the fact that bicycles
are often on the bike lane, cars generally avoid the bike lane,
you might get hit if you stand in the bike lane, etc. People
often prefer simpler construals since they are less cognitively
effortful [7], but this can affect the quality of one’s actions—
e.g., if you fail to distinguish the bike lane from the sidewalk,

you might stand in a place where a bicycle will hit you! As
we discuss later, our approach is to incorporate construals into
a forward model of planning, which allows us to articulate the
problem of conceptual misalignment as a form of misspecified
inverse planning [2].

II. RELATED WORK

Work on inferring human preferences and values is often
done in the framework of inverse-reinforcement learning (IRL)
[, 3L 5] and inverse planning [2]. In the standard IRL setting,
an agent is tasked with estimating or inferring the reward
function that an expert is optimizing. An important benefit
of IRL over other methods for learning from expert human
behavior, such as behavioral cloning [10], is that it facilitates
generalization to new scenarios outside of the data given. For
instance, by inferring that a human has a dispreference for
eating spinach after observing behavior at home, an agent could
anticipate behavior in new scenarios in which spinach appears,
such as in a restaurant. Over the past two decades, methods
for IRL have been extended in various ways and even used as
models for social cognition in cognitive science [4].

However, a key property of virtually all existing IRL methods
is that they assume behavior emerges from a planning process
that produces optimal or noisy-optimal policies [, |9, [14]. This
assumption is problematic because it is false [11} [12]. An
alternative perspective that has been developed over the past
few years is that people are resource-rational—that is, they
think and act rationally, but are subject to cognitive limitations
on time, memory, or attention [8]. A major research challenge
for IRL, value alignment, and cognitive science is incorporating
these ideas into estimating human preferences and values [4].

The work here builds on recent approaches to modeling
resource-rational human planning in the value-guided con-
strual framework, which provides an account of how humans
rationally simplify problems and apply simplified concepts in
order to plan [6} [7]. The key idea of value-guided construals
is that people do not necessarily use all concepts available
when representing a problem in order to make efficient use
of limited attention (e.g., ignoring certain details of obstacles
when navigating through a GridWorld). Applied to the IRL
setting, this involves inverting the value-guided construal
model of human decision-making and using it instead of the
classical noisy-rational model. Our goal here is to provide an
initial demonstration of the utility of incorporating concept
simplification strategies into value alignment and IRL.



III. MODEL

We begin by reviewing the basic formalism for sequential
decision-making before turning to construals and the inverse
planning problem.

A. Background

We represent sequential decision-making tasks as Markov
decision-processes (MDPs) M = (S, A, Py, T, R,~), where
S is a state space; A is an action space; Py : S — [0, 1]
is an initial state distribution; T : S x A x S — [0,1] is a
transition function; R : & x A — R is a real-valued reward
function; and v € [0,1) is a discount rate. A (stochastic)
policy is a conditional probability distribution that maps states
to distributions over actions, 7 : S — A(A). We denote the
Markov chain resulting from following policy = on an MDP
with dynamics T as T7(s" | s) = > m(a | s)T(s" | s,a).

We consider standard (unregularized) and entropy-
regularized solutions to MDPs. In the unregularized setting,
the value function associated with a policy 7 on an MDP
with dynamics 7" and reward function R maps each state to
the expected cumulative, discounted reward that results from
following m: V3, y(s) = 22, m(a | s)[R(s,a) +v 32, T(s" |
s,a)V(g 1) (s")]. The state occupancy function (also known
as the successor representation) associated with a policy m
on an MDP with dynamics 7' is the expected discounted
visitations to a state st starting from a state s, p7.(s;sT) =
1sT = s] + >, T™(s" | s)pF(s';sT). The optimal value
function for an MDP M maximizes value at each state,
Vi (8) = max {R(s,a) + 7 Y, T(s" | 5,0) Vi ().

In the entropy-regularized setting, the value of a policy 7 on
MDP M is modified to include an entropy term, which penal-
izes action distributions that are more deterministic: H (7 (- |
s))=—> ,7m(a|s)In{r(a | s)}. When this penalty is param-
eterized by a weight 5, we denote the optimal entropy-weighted
value function as V(%,T)(S) = max.{>., m(a)[R(s,a) +

S TS | 5,0V, ()] + BH ().
B. Inverse Reinforcement Learning (IRL)

The standard IRL problem formulation involves an observer
attempting to estimate the reward function of an expert demon-
strator based on observed behavior. This can be formalized as
Bayesian inference, where given a trajectory of expert acting
in the task, ¢ = {(so0,a0), (51,01}, ..., (ST, ar)}, the observer
infers the demonstrator’s reward function, R:

P(C | R)P(R)
P(C)

To calculate the likelihood of a trajectory ( given a reward

function R, it is typically assumed that the observer has

knowledge of the dynamics of the demonstrator’s task, 7.

Then, the likelihood is the probability of the trajectory being
generated by the optimal policy under a candidate R:

P(C|R) = H W?R,T)(at | st)-

(st,a¢)€C

P(R[() = (1

@

C. Inverse Construal

The inverse construal problem considers the possibility that
although a resource-limited demonstrator is acting in a task
with a particular dynamics 7', they may not be planning their
actions with respect to the fully-detailed dynamics. Rather, the
demonstrator’s behavior results from planning with respect to a
construed task dynamics, T, that is simpler or easier to solve.

Thus, an observer that takes into account the resource
limitations faced by human planners should instead be aiming
to solve an inference problem that incorporates the possibility
of alternative task construals. Formally, this is the problem:

P(|R,T)P(R,T)

P(R.T|¢) = , 3)
(R.T1) 0
where the likelihood is given by
PCIRT) = [[ wlpzlaelsn). @

(s¢,at)EC
D. Consequences of not considering construals

How bad can the estimate of R be when assuming the true
dynamics 7' versus attempting to estimate the demonstrator’s
construal T'? If we use a maximum causal entropy formulation
of IRL to get an estimated policy #™RL and compare this
to the estimated policy assuming the demonstrator is using a
construal, 7™ then the learner’s performance gap on the
true task is [13]:

~ InvCon ~ InvRL ’y . |R‘max ~

LA SR ol B (- —7(-
|U(R,T) U(R,T)‘ =T 1-9)2 Hg%XH (- 8a)=T(|s,a)l
where |R|™®* = max,, |R(s,a)|. In other words, if the

observer has an inaccurate estimate of the transition function
the actor uses to plan, they may drastically mis-estimate the
reward function that motivated behavior. This provides a formal
expression of our introductory example, in which failing to
consider that a person does not know about or is unaware of a
bike lane might lead one to interpret standing in the bike lane
as indicating a desire to be hit by a bicycle.

IV. A SIMPLE EXAMPLE OF CONCEPT MISALIGNMENT

To investigate the impact of modeling (or not modeling) a
construal on value alignment between a human subject and
a machine IRL agent, we use blocks and notches maze tasks
similar to those developed by Ho, Cohen & Griffiths [7] to
study rigidity in people’s construals (Figure [I)). Each block and
notches maze consists of a start state, a nearby goal (pink), a
faraway goal (green), black walls, and blue 3x3 blocks. The
blocks generally prevent movement, except for smaller notches
(light blue) that permit movement through the blocks.

A. Notches

In our simulations, notches (represented by light blue
squares within the 3x3 blue blocks) are shortcuts through
the maze. All human subjects are shown the same view, but
only some human subjects notice and learn how to use the
notches; others ignore the light blue vs dark blue distinction
and treat the entire 3x3 blue block as an obstacle, which



they navigate around. In other words, the human subjects
with different construals of the same ground truth grid learn
different paths [7].

A standard IRL agent is misaligned at the concept level
because it assumes an optimal policy (and therefore has no
notion that a human might not understand notches or how
to use them). Humans, as we have discussed before, often
act in ways that are not conventionally considered optimal
or even rational. The IRL agent, without an understanding
of the human subjects’ different construals, draws incorrect
conclusions about the human subjects’ values (rewards).

Of the four trajectories (Figure [1)) used in our experiments,
the two on the right are routes taken by humans who did not
pay attention to the notches. The near (pink) goal is unreachable
without using notches; think of it as a doughnut shop enclosed
on all sides by traversable construction areas (3x3 dark blue
blocks) through which there are shortcuts (light blue notches).
The grids on the left show the trajectory of a human subject
who has learned that a notch is a shortcut, and has used the
notch to form a more efficient path to their preferred goal. On
the right are the trajectories of a human subject who only knows
the blue 3x3 blocks are obstacles, without paying attention to
the fact that some sub-blocks (notches) are not obstacles at
all. Looking at these trajectories on the right, the IRL agent
which does not have any notion of construals and assumes an
optimal policy would naturally assume the human subject has
a value-related reason for avoiding the pink goal, and would
thus assume that the green goal has a higher reward. Thus we
see value misalignment emerge as a consequence of concept
misalignment between the human subject and the IRL agent.

B. Value misalignment

In our reinforcement learning framework, we use rewards as
a proxy for values. To demonstrate how concept misalignment
can lead to value misalignment between humans and machines,
we employ an inverse reinforcement learning agent to infer the
human’s values (reward function). Without knowledge of the
construals (different understanding of notches), the agent might
misattribute the path to a higher reward value for the chosen
goal, not realizing the other goal may in fact have a higher
reward, but may be impossible to reach without using/paying
attention to notches.

As a measure of how alignment at the construal level can
improve value alignment, we compare the posterior probability
P(reward, construal|traj) when jointly modeling the reward
and the construal, to P’(reward|traj), the standard IRL
posterior which assumes that the trajectory is coming from a
policy optimal with respect to the true transition function.

V. HUMAN EXPERIMENTS

To demonstrate that humans use their knowledge of con-
struals when making inferences about others’ paths, we ran a
human participant study. We showed 100 participants the same

Understands notches + near goal higher reward Does not understand notches + near goal higher reward

Understands notches + far goal higher reward Does not understand notches + far goal higher reward

Fig. 1. Four trajectories produced by different combinations of rewards and
construals. The two trajectories on the right with the construal "Does not
understand notches” look similar, because the near (pink) goal is impossible
to reach when not construing notches.

Near goal has higher reward Far goal has higher reward

Fig. 2. Trajectories produced by modeling only rewards, without accounting
for the fact that some people pay attention to notches and others don’t.

four trajectories given to the two IRL agents (Figure |1) and
asked them to make the same inferences.

Each participant was shown a live replay of each trajectory,
and then asked to infer (Figure [3) whether the person who
took this route:

1) Was paying attention to the notches
2) Liked the near goal
3) Liked the far goal

The latter two questions we equate to the posterior of the
IRL algorithm’s reward inferences about each goal. The answer
choices for each question are as follows, with the number in
parentheses showing the mapped numerical value in our Results
section:



This person was paying attention to notches.

Probably  Detinitely
false false

Definitely ~ Probably ~ Not sure
true ue
This person likes the pink goal.

Probably  Detinitely

Definitely ~ Probably ~ Notsure
true ue false false

This person likes the green goal.

Definitely ~ Probably ~ Notsure  Probably Definitely
true true false false

Continue

Fig. 3. One frame of the data collection process where we collected human
judgements on the IRL task given the four trajectories in Figure [T}

1) Definitely True (4)
2) Probably True (3)
3) Not sure (2)

4) Probably False (1)
5) Definitely False (0)

A full walkthrough of instructions, visuals, and questions
shown to the human participants is included in the supplemen-
tary materials. We also scale the IRL posterior inferences to
this 0-4 scale for direct comparison with the human judgments.

VI. RESULTS

There are three components to our results: human data, IRL
inference when jointly modeling rewards and construals, and
IRL inference when modeling only reward. These results are
shown side-by-side in Figure ] The posteriors of the IRL
inference are scaled to match the 0-4 scale of the human data.
Error bars for human data are one standard error from the mean
over all 100 participants, for each question of each trajectory.

VII. DISCUSSION

In this work, we formulate the problem of conceptual
alignment within the framework of value-guided construals.
When people are faced with a task, they often do not represent
it in full detail and instead engage in simplification strategies
to make more efficient use of limited cognitive resources [6].
As a result, people may use simplified concepts that lead to
different behaviors than if they had represented the task in

Understands notches + near goal higher reward Does not understand notches + near goal higher reward

Definitely Definitely
e o Inference produced by True . || Inference produced by

Human Human
| Jjointly modeled IRL Jointly modeled IRL
Reward-only IRL Reward-only IRL

Definitely Definitely
Faise 00 Rise 00
Paying attn to notches  Likes near goal

Likes far goal Paying attn to notches | Likes near goal Likes far goal

Understands notches + far goal higher reward Does not understand notches + far goal higher reward

Definitely
e Inference produced by Inference produced by
Human Human
Jointly modeled IRL ok Jointly modeled IRL
Reward-only IRL Reward-only IRL

Definitely
Tue o

Definitely Definitely
Rise 00 Faise 0.
Paying attn to notches  Likes near goal Likes far goal Paying attn to notches | Likes near goal Likes far goal

Fig. 4. Inferences produced by humans and the two models. In the two
”Does not understand notches” scenarios, it is impossible to know whether
the unreachable goal has a higher reward; jointly modeling construals and
rewards allows the IRL algorithm to successfully model this uncertainty.
Human subjects display similar uncertainty when making this inference. The
reward-only IRL agent answers (incorrectly) with full certainty.

complete detail. Our main goal here has been to formalize
the inverse problem of estimating what simplified concepts
people are using and show how such an approach is needed
for successful value alignment and IRL in a simple setting.

In both scenarios of the “Does not understand notches’
construal, it is impossible to know whether the unreachable goal
has a higher reward (see Figure [1)); jointly modeling construals
and rewards allows one IRL algorithm to successfully model
this uncertainty. Human subjects display similar uncertainty
when making this inference. The reward-only IRL agent
answers (incorrectly) with full certainty.

Modeling construals and allowing for alignment at a con-
ceptual level enables the IRL algorithm to correctly infer
uncertainty around values instead of confidently making an
incorrect inference. Modeling construals also brings the IRL
behavior closer to the human participants’ behavior, because
both recognize the uncertainty when inferring another human’s
values (rewards).

s

VIII. FUTURE WORK

In future work, we intend to test this approach in a wider
variety of settings with human experts as well as develop
inference algorithms that can scale to larger reward and
construal spaces. More broadly, we hope that demonstrating the
critical importance of concept alignment to the larger goal of
value alignment will open the door to future work characterizing
concept and value alignment in real-world settings.
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