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Abstract—We describe a framework for using natural language
to design state abstractions for robot learning tasks. Policy
learning in high-dimensional observation and action spaces is
greatly facilitated by well-designed state representations, which
can surface important features of an environment and hide
irrelevant ones. Today, these state representations must often
be designed by hand, or derived from other labor-intensive
labeling procedures. Our framework, LGA (language-guided
abstraction), uses a combination of natural language supervision
and background knowledge from language models (LMs) to
automatically build state representations tailored to new tasks. In
LGA, a user first provides a (possibly incomplete) description of a
target task in natural language; next, a pre-trained LM translates
this task description into a state abstraction function that masks
out irrelevant features; finally, a policy is co-trained using a small
number of demonstrations and LM-generated abstract states.
Experiments on continuous robotic control tasks show that LGA
yields state abstractions similar to human-designed ones, but in
a fraction of the time, and that these abstractions improve policy
generalization and robustness in the presence of spurious feature
correlations and ambiguous demonstrations.

I. INTRODUCTION

In complex environments with many objects, features, and
possible goals, learning a policy from a small number of
demonstrations can be challenging or impossible [6, 14].
Consider the demonstration in Fig. 1A, which shows a robot
arm executing a specific maneuver to perform a desired task.
Which task is demonstrated here—grabbing a pan, grabbing a
metal object, or placing any object on a stove? Are all pans
metallic, and all stoves red, or must learners generalize to other
feature combinations when deployed in test environments?

In humans, state abstraction is essential for generalizable
learning. When learning (and planning), humans reason over
simplified mental representations of environment states that
hide details and distinctions not needed for action prediction
[19]. Useful state abstractions are task-dependent, and a grow-
ing body of evidence supports the conclusion that humans
dynamically construct such representations to learn new tasks
[20, 23]. Importantly, this process does not begin with a
blank slate—instead, experience, common-sense knowledge,
and direct instruction provide rich sources of prior knowledge
about which features matter for which tasks. In Fig. 1A,
learning that the demonstrated skill involves cooking makes
it clear that the object’s identity (pan), not its appearance
(metallic), are likely important. Meanwhile, the demonstration
provides complementary information (about the desired speed,
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goal placement location, etc.) that are hard to communicate in
language and not encapsulated by the label cooking alone.

What would it take to build autonomous agents that can
reason about tasks and representations in this way? State
abstraction has been a major topic of research from the very
earliest days of research on sequential decision-making, with
significant research devoted to both unsupervised represen-
tation learning [13, 5, 18, 27] and human-in-the-loop state
design [4, 7, 3, 17]. But there are few tools for incorporating
human priors for constructing abstractions in new domains.

In this paper, we propose to use natural language as a
source of information about state representations. Our ap-
proach, called Language-Guided Abstraction (LGA) (Fig.
1B), begins by querying human users for high-level task
descriptions, then uses a pre-trained language model (LM) to
translate these descriptions into task-relevant state abstractions.
Importantly, LGA requires only natural language annotations
for state features. Unlike most recent work applying language
models to sequential decision-making tasks [22, 1], it does not
depend on pre-trained skills, multiple training tasks, or even
the ability to fully specify tasks in language. It may be applied
generically to any technique for learning from demonstrations,
with or without other forms of side-information. Experiments
comparing LGA to standard behavior cloning show that gener-
ated abstractions improve sample efficiency and distributional
robustness in both single- and multi-task settings. They match
the performance of human-designed state abstractions while
requiring only a fraction of the human effort.

A crucial function of language is to communicate useful
information about the structure of the world [10, 41, 40, 32,
29, 35]. LGA integrates this linguistically transmitted rep-
resentational information into policy learning, enabling state
abstraction with human-like flexibility and task-specificity.

II. PRELIMINARIES

In behavioral cloning (BC), we assume access to
a set of expert demonstrations Dtrain = {τ i}ni=0 =
{(si0, ai0, si1, ai1, ...sit, ait)}ni=0 from which we derive an expert
policy πθ [36] by minimizing:

LBC = E(sit,a
i
t) ∼Dtrain

[∥πθ(s
i
t)− ait∥22] (1)

In goal-conditioned behavioral cloning (GCBC), policies
additionally condition on goals l [12]. Motivated by the
idea that natural language is a flexible, intuitive interface for
humans to communicate, we specify the goal through language
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Fig. 1. A: Example trajectory in our environment, picking up a pan and placing it on the stove. B: Our approach, Language Guided Abstraction (LGA),
constructs a state abstraction with task-relevant features from an LM. The state abstraction is then co-trained with the original state.

instruction l ∈ L, resulting in a training objective:

LGCBC = E(sit,a
i
t,l

i) ∼Dtrain
[∥πθ(s

i
t, l

i)− ait∥22] (2)

Above we have highlighted differences from BC in red.
A (GC)BC policy π(sit, l

i) must generalize to novel com-
mands li and contextualize them against potentially novel
states sit. Due to difficulties with sampling representative
data and expense of collecting a large number of expert
demonstrations, systematic biases may be present in both
the training demonstrations (si0, a

i
0, · · · ) for a goal, or the

commands li describing the goal. This can result in brittle
policies which fail to generalize. In particular, we identify two
possible sources of covariate shift: (1) out-of-distribution states
si, or (2) out-of-distribution utterances li.

III. LANGUAGE-GUIDED ABSTRACTION (LGA)

Traditional (GC)BC forces the behavioral policy to learn
a joint distribution over language and perceptual states —
effectively requiring the robot to develop both language and
perceptual scene understanding simultaneously, and to ground
language in the current state. Our approach instead offloads
contextual language understanding to a LM which identifies
task-relevant features in the perceptual state. We introduce a
state abstraction function that takes the raw perceptual inputs
and language-specified goal, and outputs a set of task-relevant
features. Intuitively, LGA can be seen as a form of language-
guided attention [2]: it conditions the agent’s perceptual inputs
on language, removing the burden of language understanding
from the policy. Fig. 1 illustrates our approach.

A. State Abstraction Function

Formally, we define a state abstraction function f̂ that
produces task-relevant state representations: f̂ : S × L → Ŝ.
f̂ consists of three steps:

Textualization (s → ϕ). First, similar to other LM-assisted
methods [22, 1] the raw perceptual input s is transformed
into a text-based feature set ϕ, representing a set of features
(described in natural language) that encapsulate the agent’s
full perceptual inputs.1 This text representation may include

1In the general case, this stage could be implemented via semantic seg-
mentation [25] with an object captioner.

common visual attributes of the state like object type, color,
and texture. In fig. 1B, for example, the textualization step
transforms state observations to object types and colors.

Feature abstraction (ϕ → ϕ̂). Given a feature set ϕ, we
achieve abstraction by removing features from ϕ which are
irrelevant to the task l: (ϕ, l) → ϕ̂. In fig. 1B, for example,
the abstraction step removes distractor objects from the feature
set, in this case preserving only the target object (pan).

Instantiation (ϕ̂ → ŝ). As a last step, we transform the
abstracted feature set back into an (abstracted) perceptual input
with only relevant features on display: ϕ̂ → ŝ. This step
is required for putting the abstracted feature set into a form
understandable to the policy. In fig. 1B, for example, this step
transforms the abstracted feature set into a state showing only
the relevant object, removing colors.

B. Abstraction-Augmented Policy Learning

After receiving an abstract state from the state abstraction
function, we augment the original state s with the abstracted
state ŝ and learn a policy on top of both states, yielding πθ̂ :

S × Ŝ → A. 2 πθ̂ is trained to minimize the loss:

LLGA = E(sit,a
i
t,l

i) ∼Dtrain
[||πθ̂(s

i
t, f̂(s

i
t, l

i))− ait||22] (3)

with the differences from GCBC (Eq. 2) highlighted in red.
The LGA policy πθ̂ never sees the language input l; instead,
it operates over the language-conditioned representation, ŝ.

LGA offers several appealing properties relative to tradi-
tional (GC)BC. Feature correlates are mitigated during training
because all goal information is highlighted in semantic maps
rather than the raw pixels. The LM can help resolve goal
ambiguities present at test by effectively converting the raw
utterance and test state into a goal-conditioned abstract state
that the agent can then operate on. Goal ambiguity is mitigated
during deployment, as the LM can “intercede” to determine
only the contextually-appropriate task-relevant features.

2While learning policies directly over the abstract state alone is theoretically
possible and computationally cheaper, it also requires that the abstraction
preserve all task-relevant information. We take a more conservative approach,
allowing the policy to observe both the original and abstracted states.



IV. EXPERIMENTAL SETUP

A. Environment and Feature Space
We generate a series of robotic control tasks from VIMA

[24], a vision-based simulation environment. We focus on
setups where a UR5 arm is tasked with picking up a specified
target object and placing it on a goal on a tabletop surface. The
environment consists of a large feature space (29 objects, e.g.
“bowl”, and 81 textures, e.g. “wooden”) of various semantic
meaning (full list in Appendix). Success is a pick-and-place
action of the specified target object within radius ϵ of the goal.

The task-relevant feature set ϕ̂ is specified via a JSON
configuration containing possible instantiations of the target
object and texture. Because the full feature space (ϕ) can
be combinatorially large (objects of all textures), constructing
abstractions that preserve only task-relevant features of an
ambiguously specified objective (l), e.g. something that can
hold water, is challenging.

B. State Abstraction Function
Textualization. In our experiments, we extract a structured

feature set ϕ by obtaining the ground truth state segmentation
mask and text object descriptions from the simulator.

Feature abstraction. We use two versions of LGA for
eliciting relevant feature sets ϕ̂. Our (vanilla) LGA simply
uses a language model to specify a relevant feature set and
LGA-HILL uses an LM together with a human-in-the-loop.

In our experiments, for both LGA methods, we use
GPT4 [34] as the LM for feature extraction. For each task,
we query the LM for an initial hypothesis of a specified
abstract feature set, which may then be interactively refined by
a human. In our experiments, we implement this by asking the
LM whether each object type and feature in the environment
could correspond to the intended task described by the goal
utterance. In each query, we give GPT4 a description of the
environment (including a list of all possible object types and
colors), the goal utterance for the task being considered, and a
target object type or feature that we want the model to evaluate
(the full prompt and additional details can be found in the
Appendix). With these queries, we have the model provide a
binary response for whether every object type and feature can
apply to the target object specified in each task.

For LGA-HILL, humans are shown the list of features the
LM identified as pertinent and can refine ŝ by adding or
removing features (section IV-E details the user study).

Instantiation. As described in section IV-A, the abstract
state representation consists of a distribution over target object
types and target object colors. Given a target object type and
color, we use an image editor or simulator to pick out all
objects of the salient type and color. In particular, the image
editor produces a “goal mask”, a binary pixel mask where the
goal object is converted to ones and everything else is zeroed
out.3 In our setting, the simulator provides the ground-truth
scene segmentation which we use to produce the goal mask.

3Here, we produce a simple binary pixel mask highlighting the target object.
In general, however, it may be fruitful to experiment with more general scalar
cost maps, such as highlighting areas that should be avoided.

C. Abstraction-Augmented Policy Learning

We instantiate the abstraction-augmented policy procedure,
described in section III-B, in our environment. LGA learns
a joint policy by co-training on (s, ŝ). We implement a dual-
CNN architecture that independently processes each state input
into embeddings, which we then concatenate and feed through
a MLP for action prediction.

D. Training and Test Tasks

Training Tasks. We are interested in studying how different
methods are able to perform task-relevant feature selection, i.e.
specify ϕ̂. We parameterize a task distribution by instantiating
possible target features specified in ϕ̂ (e.g. “pan”, “bowl”,
and “container” and all textures for something that can hold
water). To create a task, we sample a target object and
texture from this distribution as the “pick” object. We then
generate a random distractor object. Distractors and target
objects are randomly placed in one of three discretized state
locations. Last, we place a fixed goal object (pallet) in the
state as the “place” goal. We generate corresponding training
demonstrations via an oracle.

Test Tasks. In practice, we do not have access to ground
truth task distributions – this specification must come from
the end user. However, for our experiments, we sample test
tasks from a “true” distribution defined by experimenters to
evaluate performance. Details are in the Appendix.

E. Comparisons

We compare instantiations of our proposed approach (LGA
and LGA-HILL) against two baselines. Question-specific
metrics are described in section IV.

Human (Baseline). The first baseline focuses on having
users (instead of LMs) manually specify task-relevant features
ϕ̂ in the feature abstraction stage, to isolate the effect of LM-
aided specification. All other components remain the same
as in LGA. The features are fed to the same dual-CNN
architecture as for LGA and the policy is again learned over
the concatenated representations.

GCBC (Baseline): Our second baseline is (goal-
conditioned) behavior cloning, described in Eq. 2. We
implement GCBC by concatenating an LM embedding of the
goal utterance with a CNN embedding of the state and then
learning a policy over the joint representation. We generate
language embeddings using Sentence-BERT [37].

Human Data Collection. For comparisons that require
human data (LGA-HILL and Human), we conducted a in-
person user study to assess the ability of humans to specify
task-relevant features ϕ̂ in the feature abstraction step, both
with and without an LM. We recruited 14 participants (47%
male, aged 22-40). All participants attested to having never
worked with machine learning or holding a STEM degree.
Our study passed IRB review and all data was anonymized.

We first introduce the user to the environment and full
feature space ϕ. To additionally help human participants, we
provide both a text and visual representation of features (the
latter of which the LM does not see). We also walk the



Fig. 2. (Q1) A: Comparing performance (averaged over the nine Q1 tasks)
of each method when controlling the number of training demonstrations.
B: Comparing the amount of time (averaged over the nine Q1 tasks) that
human users spent specifying task-relevant features for each method. LGA
outperforms naive GCBC on task performance while significantly reducing
user time spent compared to manual feature specification (p < 0.001).

user through an example task specification. In the Human
condition, we introduce task objectives (detailed in section IV)
sequentially to the user and ask for them to specify ϕ̂ by typing
their selected features into a task design file (we provide the
full feature list for easy access). In the LGA-HILL condition,
we show the same objectives, but with LM answers prefilled as
the “raw” ϕ̂. To minimize ordering bias, we randomly assign
half of our participants to begin with each condition. For both
conditions, we measure the time spent per task.

V. RESULTS

We investigate three questions related to our approach: (Q1)
Does LGA help users specify single-task policies faster and
more effectively than baselines? (Q2) Is LGA more robust
to observational covariate shift than baselines? (Q3) Is LGA
more robust to language ambiguity in multi-task settings?

A. Q1: Improving ease and performance of task specification

Metrics. We measure two variables: task performance and
user specification time. Task performance is assessed as the
success rate of the policy on 20 sampled test tasks, and user
specification time is measured as the time in seconds each user
spent specifying the task-relevant feature set for each task.

Task Objectives. We construct nine tasks with a wide
range of true abstract feature sets: red heart, heart, letter,
tiger-colored object, letter from the word letter, consonant
with a warm color, vowel with multiple colors, something to
drink water out of, and something from a typical kitchen. We
chose these tasks to 1) test the ability of the LM in LGA
to semantically reason over which target objects and features
satisfy human properties, e.g. to drink water out of, and 2)
explore how potentially laborious performing manual feature
specification from large feature sets can be for human users.

Results. We vary the number of demonstrations that each
policy is trained on from 10 to 50. We visualize the resulting
policy performance in Figure 2 (A). In Figure 2 (B), we
visualize how much time users spent specifying the task-
relevant features for each method4. From these results, it is
clear that the feature-specification methods (i.e. LGA, LGA-
HILL, and Human) are more sample-efficient than GCBC with

4While we assign zero time spent specifying features for GCBC in
our experiments, in practice, user time would be instead spent specifying
initial state configurations for generating every demonstration, which only
disadvantages naive GCBC even more when compared to methods that specify
features.

Fig. 3. (Q2: Texture Shift) A: An example training task for the heart
task. B: An example test task, where the texture of the target object
has shifted (red box). C: LGA outperforms GCBC on both tested tasks,
confirming our hypothesis that providing a non-ambiguous state abstraction as
additional policy training information results in policies that are most robust
to observational covariate shift.

Fig. 4. (Q2: New Distractors) A: An example training task for the heart
task. B: An example test task, where an additional distractor appears (red box).
C: LGA outperforms GCBC on both tested tasks, additionally validating the
robustness of the policy when deployed in cluttered scenes.

consistently higher performance at each number of training
demonstrations. Furthermore, LGA methods require signifi-
cantly less user time than the Human baseline (p < 0.001
using a paired t-test for all tasks). We note that despite
comparable task performance between LGA and LGA-HILL,
the latter remains a valuable instantiation for tasks that require
human input, such as high-stakes decision-making scenarios or
personalization to individual user preferences.

Summary. LGA requires significantly less human time than
manually specifying features, but still leads to better sample-
efficient performance compared to GCBC.

B. Q2: Improving single-task policy robustness to observa-
tional covariate shift

We have shown that LGA enables faster feature specification
when compared to hand-engineering features from scratch, and
also leads to more sample-efficient policies when compared
to naive GCBC. We now ask whether the state abstractions
learned by LGA policies result in performance that is more
robust to state covariate shift.

Task Objectives. We evaluate on two previously defined
tasks in Q1: heart and letter. For each task, we now construct
two types of state covariate shift to test policy robustness:

Texture Shift. For heart, we define a training distribution
where “heart” is parameterized only as the textures “red”,
“green”, and “blue”. At test time, we evaluate by sampling
tasks from a distribution where “heart” is instead parameter-
ized by “yellow”, “tiger”, and “rainbow”. We do the same
with all the letters present in the letter task’. These tasks
are intended to evaluate LGA’s flexibility in including (and
excluding) appropriate task-relevant features.

New Distractors. We define the same training distributions
as above, but evaluate by sampling test tasks where an addi-
tional distractor (randomly sampled from the full feature set)
is placed randomly in the state. These tasks are intended to



Fig. 5. (Q3) A: An example training task for the bowl and star multi-
task. B: An example test task, where two valid target objects (bowl and star)
appear. LGA can resolve linguistic ambiguity, even though it has never seen
the utterance “something I can find in a typical kitchen”, to identify the correct
target object (red box). C: LGA outperforms GCBC in multi-task settings with
task ambiguity.

evaluate LGA’s ability to be robust to cluttered scenes.
Results. We train on 50 demonstrations sampled from the

train distribution for each task, then evaluate on 20 tasks
sampled from the test distribution. As shown in Fig. 3, policies
trained with either of the LGA methods are more robust to
state covariate shifts than those trained with GCBC. This
confirms our hypothesis that providing a non-ambiguous state
abstraction that already precludes non-relevant task features
from the state result in policies that are less brittle to spuriously
correlated state features that may occur in test environments.

Summary. Single-task policies trained with LGA are more
robust to observational shift than BC.

C. Q3: Improving multi-task robustness to linguistic ambiguity

The previous experiments evaluated LGA in single-task
settings where each policy corresponds to a singular task. We
now evaluate how LGA performs in the multi-task case where
test environments allow for multiple tasks to be performed, and
conditioning on language is necessary to resolve the ambiguity.

Task Objectives. We now define two new tasks: bowl and
star and train a multi-task policy on both tasks. We define our
training distribution as states that have either a bowl or a star,
(with no distractors). At test time, we present the policy with
states that have both a bowl and a star. We condition the policy
on the two linguistic utterances it has seen before: “Bring me
a bowl.” and “Bring me a star.”, and one that it has not: “Bring
me something I can find in a typical kitchen.” The first two
test tasks evaluate whether the policy has successfully learned
a multi-task policy that is robust to state shift ambiguity from
seeing both objects at test time (after seeing only one object
at a time during train). The third test task evaluates zero-shot
generalization performance of the policy on linguistic shifts.

Results. For each method, we train on 50 demonstrations
sampled from the train distribution for each task, then evaluate
on 20 task instances from the test distribution. We visualize
the results in Figure 5. From these results, it is clear that the
LGA methods strongly outperform GCBC in the multi-task
setting, both in the case of state covariate shift and in the case
of linguistic utterance shift.

Summary. Multi-task policies trained with LGA can better
resolve task ambiguity compared to GCBC as they are more
robust to both observational covariate shift and changes in the
linguistic utterance.
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APPENDIX

A. Discussion

Limitations. We assume state abstractions for training good
policies can be captured by visual features present in the
initial state (and therefore, only require querying the LM for
task-relevant features at the beginning of each trajectory). An
exciting direction for future work would be to learn how to
build state abstractions for trajectory-relevant features. We also
assume features themselves are expressible in language, i.e. a
LM (or human) can understand how each feature may or may
not relate to the task. In more complex scenarios, many real-
world tasks may be dependent on features that are less express-
ible in language, e.g. lighting, and are difficult to encapsulate
in an abstraction. We are excited to explore additional feature
representations (perhaps multimodal visualization interfaces in
addition to language representations) that can be jointly used
to construct state abstractions.

Broader impact. LGA involves using an LM to guide task
abstraction. As in many other machine learning settings, there
is a risk that pre-trained models may reflect or even amplify
social biases found in their training data. For settings where
this and other automation safety risks exist, we suggest using
the human-in-the-loop version of our framework (LGA-HILL)
to ensure that the LM-suggested features are validated by
humans before being deployed in real-world settings.

B. Related Work

Abstraction in Human Learning. There is substantial
evidence to suggest much of the flexibility of human learning
and planning can be attributed to information filtering of task-
relevant features [30, 23, 19, 42, 9]. For example, visual ab-
stractions have been found to prioritize functional properties,
i.e. downstream task use, at the expense of visual fidelity,
i.e. reconstruction [23]. This suggests that flexibly creating
task-conditioned abstractions is important for fast downstream
learning, particularly in low-data regimes [33, 6]. Inspired by
this, we seek to train neural agents that also flexibly construct
and deploy task abstractions.

Language-Aided Task Design. Reinforcement learning
from human feedback (RLHF) [11] leverages LMs by fine-
tuning reward models on large amounts of human data. Several
works [16, 26, 39, 8] instead use LMs to shape or learn reward
models by training a policy to complete intermediate or higher-
level tasks and asking the LM to annotate resulting policy
behavior. In contrast, we instead leverage the rich semantic
priors provided by LMs to learn representations of the desired
task.

LMs for Planning. Large language models, trained on large
amounts of text data, contain commonsense information about
object properties, functions, and their salience / relevance to
various tasks. Past work on leveraging this information for
robotics have predominantly focused on using LMs to generate
plans or high-level action sequences [38, 1, 21, 22]. Other
approaches for policy generation include chaining together a
sequence of multimodal LMs [43], using LM probabilities

as part of a structured probabilistic model [28]. Aside from
generating policies, LMs have also been used in other places
in the RL pipeline, including for reward design [26], or for
guiding exploration [33, 15].

In this work, we specifically study LMs for constructing
state abstractions. Furthermore, as natural language is a flexi-
ble and intuitive interface for human interaction, we also study
how humans can be integrated into our system to help guide
the creation of these state abstractions.

Perhaps most similar to our approach is [31], which con-
ditions on language and raw visual observations to create
a binary goal mask, specifying goal location within an ob-
servation. However, our proposed approach is more flexible
(potentially allowing for relevant abstract state features that
aren’t the goal object location) and more personalizable (our
approach allow humans to interact with the system, meaning
they could potentially refine the representation based on indi-
vidual preference).

C. Environment Details

States are fully-observable images of dimension 80×80×3
and represent a RGB fixed-camera topdown view of the scene.
The action space is continuous of dimension 4 and consists of
high-level pick-and-place actions parameterized by the pose
of the end effector. There are 4 possible objects that can
be spawned: the target (manipulated) object, goal object,
and (up to) two possible distractors. There are two types
of target features (object type and texture) and 29 possible
instantiations of object type and 81 instantiations of texture.
Visual depictions of the features can be found in the user study
below.

D. Task Details

We provide details regarding all tasks, including ground
truth task distributions and full LM prompt.

red heart:
• Task prompt: Bring me the red heart.
• True distribution: {objects: heart}, {textures: red, dark

red, dark red swirl, red paisley}
heart:
• Task prompt: Bring me the heart.
• True distribution: {objects: heart}, {textures: ALL}
tiger-colored object:
• Task prompt: Bring me the tiger-colored object.
• True distribution: {objects: ALL}, {textures: tiger}
letter from the word letter:
• Task prompt: Bring me a letter from the word ‘letter’.
• True distribution: {objects: letter E, letter R, letter T},
{textures: ALL}

consonant with warm-color:
• Task prompt: Bring me a consonant with a warm color

on it.
• True distribution: {objects: letter G, letter

M, letter R, letter T, letter V}, {textures:
dark {red—yellow—pink—orange}, dark
{red—yellow—pink—orange} and * stripe,



{red—yellow—pink—orange} and * polka dot,
dark {red—yellow—pink—orange} and * polka dot,
{red—yellow—pink} swirl, dark {red—yellow—pink}
swirl, {red—yellow—pink} paisley, tiger, magma,
wooden, rainbow, tiles, brick}

vowel with multiple colors:
• Task prompt: Bring me a vowel with multiple colors on

it.
• True distribution: {objects: letter A, letter E}, {textures:

polka dot, tiles, checkerboard, plastic, tiger, magma,
rainbow, * and * stripe, * and * polka dot, * swirl, *
paisley}

something to drink water out of :
• Task prompt: Bring me something to drink water out of.
• True distribution: {objects: bowl, pan, container},
{textures: ALL}

something from a typical kitchen:
• Task prompt: Bring me something from a typical kitchen.
• True distribution: {objects: bowl, pan, container},
{textures: ALL}

1) Full Prompt: ChatGPT models (including GPT4) can
take in both system prompts and user prompts. We split our
prompt into these two parts as follows.

System prompt where {object list} is replaced by the list
of all object types in the environment and {object colors} by
the list of all colors and textures:

You are interfacing with a robotics environment
that has a robotic arm learning to pick up objects
based on some linguistic command (e.g. “pick up
red bowl”). At each interaction, the researcher will
specify the command that you need to teach the
robot. In order to teach the robot, you will need to
help design the training distribution by specifying
what properties the target object can have based on
the given command. Target objects in this environ-
ment have two properties: object type, object color.
Any object type can be paired with any color, but
an object can only take on exactly one object type
and exactly one color.
Object types:
{object list}
Object colors:
{object colors}

User prompt where {rule} is replaced by one of the task
prompts listed above, {group} is replaced by “object color” or
“object type”, and {candidate} is replaced by each candidate
object color or type that we would like the LM to evaluate:

The command is “{rule}”. In an instantiation of the
environment that contains only some subset of the
object types and colors, could the target object have
{group} “{candidate}”? Think step-by-step and then
finish with a new line that says “Final answer:”
followed by “yes” or “no”.

E. Architecture and Training Details

Architecture.

For GCBC, Sentence-BERT processes a goal utterance in
natural language into an embedding of size 384, which we
additionally process through a linear MLP of output size 100.
We process the state using a standard Conv2D block consisting
of 3 stacked Conv2D layers of output channel sizes 32, 64,
32, and strides 4, 2, and 1. Each output layer is processed
by BatchNorm2D as well as a ReLU activation. After the last
Conv2D layer, we flatten the output and concatenate with the
output of the goal utterance. We feed the concatenated output
through a last linear layer for action prediction.

For LGA, we process both the state and the state abstraction
through dual Conv2Ds blocks like above. We concatenate the
output and feed through a last linear layer for action prediction.

Training.
We train all networks to convergence for a maximum of

300 epochs. All computation was done on two NVIDIA
GeForce RTX 3090 GPUs. Rollouts were rendered locally
using PyBullet on a Macbook Pro.

F. User Study

In the following pages, we have included the full user
study shared with participants. Following standard user study
procedure, we initial briefed users by telling them how long the
study was (roughly 30 mins) and that they were free to leave
at anytime. Demographic information was collected in person.
We showed participants the first pdf during the familiarization
phase to introduce them to the environment and full feature
list. We then randomly chose to begin with either the human-
only task (second pdf) or the LM-aided task (third pdf). After
the study, users were debriefed and given the email of the
study designer to contact if they had any questions.





In [3]: task_kwargs = {
     'possible_dragged_obj': ['diamond',

'triangle',
'hexagon',
'pentagon',
'square'],

     'possible_dragged_obj_texture': ['red and yellow polka dot', 
'red and green polka dot', 
'red and blue polka dot', 
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot', 



'dark red and green polka dot', 
'dark red and blue polka dot', 
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',]}



In [2]: 'possible_dragged_obj': ['L-shaped block',
'block',
'bowl',
'container',
'cross',
'diamond',
'flower',
'frame',
'heart',
'hexagon',
'letter A',
'letter E',
'letter G',
'letter M',
'letter R',
'letter T',
'letter V',
'line',
'pallet',
'pan',
'pentagon',
'ring',
'round',
'shorter block',
'small block',
'square',
'star',
'three-sided rectangle',
'triangle']

In [ ]: 'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',



'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']

In [4]: task_kwargs = {
     'possible_dragged_obj': [],



     'possible_dragged_obj_texture': []}
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In [ ]: 'possible_dragged_obj': ['L-shaped block',
'block',
'bowl',
'container',
'cross',
'diamond',
'flower',
'frame',
'heart',
'hexagon',
'letter A',
'letter E',
'letter G',
'letter M',
'letter R',
'letter T',
'letter V',
'line',
'pallet',
'pan',
'pentagon',
'ring',
'round',
'shorter block',
'small block',
'square',
'star',
'three-sided rectangle',
'triangle']

In [ ]: 'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',



'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']



In [ ]: task_kwargs = {
     'possible_dragged_obj': ['heart'],
     'possible_dragged_obj_texture': ['red',

'dark red',
'red swirl',
'dark red swirl'
'red paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['heart'],
     'possible_dragged_obj_texture': ['brick',

'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',



'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['L-shaped block',

'block',
'bowl',
'container',
'cross',
'diamond',
'flower',
'frame',
'heart',
'hexagon',
'letter A',
'letter E',
'letter G',
'letter M',
'letter R',
'letter T',
'letter V',
'line',
'pallet',
'pan',
'pentagon',
'ring',
'round',
'shorter block',



'small block',
'square',
'star',
'three-sided rectangle',
'triangle'],

     'possible_dragged_obj_texture': ['tiger']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['letter E'

'letter R',
'letter T'],

     'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',



'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['letter G',

'letter M',
'letter R',
'letter T',
'letter V'],

     'possible_dragged_obj_texture': ['polka dot',
'orange',
'pink',
'red',
'yellow',
'dark orange',
'dark pink',
'dark red',
'dark yellow',
'red and yellow stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark yellow and purple stripe',
'red and yellow polka dot',
'dark red and yellow polka dot',
'red swirl',
'yellow swirl',
'dark red swirl',
'dark yellow swirl',



'red paisley',
'yellow paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['letter A',

'letter E'],
     'possible_dragged_obj_texture': ['polka dot',

'checkerboard',
'tiger',
'magma',
'rainbow',
'yellow',
'dark green',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'yellow swirl',
'green swirl',
'blue swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',



'dark purple swirl',
'red paisley',
'green paisley',
'blue paisley',
'purple paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['letter A',

'letter E',
'letter G',
'letter M',
'letter R',
'letter T'],

     'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',



'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}

In [ ]: task_kwargs = {
     'possible_dragged_obj': ['bowl',

'container'],
     'possible_dragged_obj_texture': ['brick',

'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',



'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',
'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}



In [ ]: task_kwargs = {
     'possible_dragged_obj': ['bowl',

'container',
'pan'],

     'possible_dragged_obj_texture': ['brick',
'tiles',
'wooden',
'granite',
'plastic',
'polka dot',
'checkerboard',
'tiger',
'magma',
'rainbow',
'blue',
'cyan',
'green',
'olive',
'orange',
'pink',
'purple',
'red',
'yellow',
'dark blue',
'dark cyan',
'dark green',
'dark olive',
'dark orange',
'dark pink',
'dark purple',
'dark red',
'dark yellow',
'red and yellow stripe',
'red and green stripe',
'red and blue stripe',
'red and purple stripe',
'yellow and green stripe',
'yellow and blue stripe',
'yellow and purple stripe',
'green and blue stripe',
'green and purple stripe',
'blue and purple stripe',
'dark red and yellow stripe',
'dark red and green stripe',
'dark red and blue stripe',
'dark red and purple stripe',
'dark yellow and green stripe',
'dark yellow and blue stripe',
'dark yellow and purple stripe',
'dark green and blue stripe',
'dark green and purple stripe',
'dark blue and purple stripe',
'red and yellow polka dot',
'red and green polka dot',
'red and blue polka dot',
'red and purple polka dot',
'yellow and green polka dot',
'yellow and blue polka dot',
'yellow and purple polka dot',
'green and blue polka dot',
'green and purple polka dot',



'blue and purple polka dot',
'dark red and yellow polka dot',
'dark red and green polka dot',
'dark red and blue polka dot',
'dark red and purple polka dot',
'dark yellow and green polka dot',
'dark yellow and blue polka dot',
'dark yellow and purple polka dot',
'dark green and blue polka dot',
'dark green and purple polka dot',
'dark blue and purple polka dot',
'red swirl',
'yellow swirl',
'green swirl',
'blue swirl',
'purple swirl',
'dark red swirl',
'dark yellow swirl',
'dark green swirl',
'dark blue swirl',
'dark purple swirl',
'red paisley',
'yellow paisley',
'green paisley',
'blue paisley',
'purple paisley']}
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