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Abstract—The use of an internal model to infer and predict
others’ mental states and actions, broadly referred to as Theory
of Mind (ToM), is a fundamental aspect of human social
intelligence. Nevertheless, it remains unknown how these models
are used during social interactions, and how they help an agent
generalize to new contexts. We investigated a putative neural
mechanism of ToM in a recurrent circuit through the lens of
an artificial neural network trained with reinforcement learning
(RL) to play a competitive matching pennies game against
many algorithmic opponents. The network showed near-optimal
performance against unseen opponents, indicating that it had
acquired the capacity to adapt against new strategies online.
Analysis of recurrent states during play against out-of-training-
distribution (OOD) opponents in relation to those of within-
training-distribution (WD) opponents revealed two similarity-
based mechanisms by which the network might generalize:
mapping to a known strategy (template matching) or known
opponent category (interpolation). Even when the network’s
strategy cannot be explained by template-matching or inter-
polation, the recurrent activity fell upon the low-dimensional
manifold of the WD neural activity, suggesting the contribution of
prior experience with WD opponents. Furthermore, these states
occupied low-density edges of the WD-manifold, suggesting that
the network can extrapolate beyond any learned strategy or
category. Our results suggest that a neural implementation for
ToM may be a reservoir of learned representations that provide
the capacity for generalization via flexible access and reuse of
these stored features.

I. INTRODUCTION

Theory of Mind broadly refers to the ability of humans and
perhaps other animals to reason about others’ mental states
[1]. This ability is particularly crucial for intelligent behavior
in highly non-stationary, agent-dependent social environments
where interactions often require generalization beyond prior
experience [2, 3]. In these situations, people might use intuitive
theories based on introspection and experience with how
people generally react to external events [4]. Alternatively,
people might infer optimal strategies by learning others’ be-
liefs implicitly through iterative interactions [5]. Nevertheless,
the computational and neural mechanisms of ToM are largely
unknown.

In this study, we investigated a potential neural mechanism
for ToM that is learned via social interactions, especially
examining how this system could be used to help agents
adapt to novel contexts. Computational models that interact
in a social environment can provide important insights into

the neural mechanism of ToM [3, 6]. Interactive models of
ToM have been designed in the field of multi-agent RL for
both competitive and cooperative environments, but this has
traditionally focused on engineering a more successful agent
[7–13]. Previous computational studies seeking to understand
ToM have not included the capacity to interact [14–16], instead
focusing on models that predict agent behavior, one hypoth-
esized function of ToM [17, 18]. Importantly, an interactive
agent needs to consider the consequences of its actions. This
is taken into account in RL, where the reward function looks
forward into future states, for example by utilizing reward-to-
go or bootstrapping with a value function [19]. These features
should play a significant role in shaping neural representa-
tions. Hence, interactive agents may learn more naturalistic
representations than predictive models. Moreover, studies on
the neural basis of ToM have identified that interactive RL
models align well with functional imaging activity during a
social simulation task [20], suggesting that predictive ToM can
develop by repurposing systems trained for social interactions
[21, 22].

To gain insights into how ToM might emerge from the
dynamics of neural networks, we analyzed recurrent neural
networks (RNNs) trained with meta-RL on iterative Matching
Pennies (MP). Iterative MP provides a versatile platform to
simulate social interactions based on various types of belief
learning [5, 23], and RL provides an interactive learning
framework that connects to known computational and neural
mechanisms underlying behavior in iterative MP [19, 24–26].
A previous study identified that the hidden layers of a purely
feedforward Deep RL agent trained to play a cooperative
game learned to represent the other agent’s intention, but
their agent could not generalize to novel collaborators [27].
We hypothesized that training our recurrent network to play
against an array of distinctive algorithmic opponents would
improve generalization by encouraging the network to learn
a broader representation of opponent behavior [3, 28]. Meta-
learning (“learning to learn”) further improves generalization
ability by teaching the network to self-correct from feedback
using only recurrent neural dynamics, a potential mechanism
of the prefrontal cortex as suggested by [29].

We asked how the geometry of the RNN’s state space
supports adaptive behavior in iterative MP. To investigate how
the network responds to novel social interactions, we asked



Opponent Stochastic Dependent
on Self

Dependent
on Agent

Adaptive Optimal
P(Reward)

MP 1 x x x 0.5

MP 1+2 x x x x 0.5

LC x x >0.5

PB x 1.0

AB x p

SQL x x x > 0.5

ϵ-QL x x 1− ϵ

MC x 1.0

TABLE I
OPPONENT STRATEGIES AND FEATURES. AN ’X’ INDICATES THAT THE

OPPONENT’S CHOICE STRATEGY HAS THIS CHARACTERISTIC.

how the geometry of the recurrent state changed when the
agent played against novel opponents.

II. METHODS

A. Matching Pennies Task and Opponents

Matching Pennies pits two players against one another in
an iterative, binary-choice game. At each step, both players
pick one of two ’pennies’. One player wins if they select
the same penny, and the other wins if they select different
pennies. The winner receives a fixed reward of arbitrary
size, and the loser receives zero. Despite this simplistic task
structure, MP requires subjects to learn complex, time-varying
strategies to outsmart their opponent. We defined multiple
classes of opponents with qualitatively different behaviors, and
simulated the MP task in NeuroGym (neurogym.github.io). In
our simulation, each trial consists of a single step of choice
immediately followed by outcome. We briefly summarize key
qualities of the eight opponent classes in table I. There are
503 unique strategies total in the eight classes.

Our first two opponents were originally defined to test how
macaques learn to compete against an opponent that detects
and exploits statistical biases in their recent choice history
[26, 30]. We refer to these algorithms as the Matching Pennies
algorithms (MP 1 and MP 1+2), which use choice history
and choice and outcome history, respectively. Against these
opponents, random choices are optimal according to a mixed-
strategy Nash equilibrium [26]. The Linear Combination
(LC) opponents use a stochastic strategy defined by a linear
combination of past choices and choice-outcome interaction:

logit(P (ct+1 = 1)) = b0+bT
1 ct:t−n+bT

2 rt:t−n⊙ct:t−n (1)

Where b0 ∈ R,b1,b2 ∈ Rn are coefficients with parameters
randomly selected from a predefined set ranging from -2 to
2, and the reward and choice history vectors rt:t−n, ct:t−n ∈
{−1, 1}n. ⊙ indicates element-wise product. We defined n to
be small, ranging from 2 to 4. The fourth algorithm (Pattern-
Based, PB) deterministically makes choices according to a

binary pattern of length n ∈ [1, 6]. If the agent can identify
the pattern, it can play perfectly.

The fifth algorithm (anti-correlated bandit, AB) is a
classic two-armed bandit task [19], with anti-correlated reward
probabilities {p, 1 − p} that are randomly resampled every
50-75 trials. The next two opponents are tabular Q-Learning
RL agents with different exploration processes: the first uses
the SoftMax function to determine the policy distribution
(SoftMax Q-Learning, SQL), whereas the second uses the
ϵ-greedy algorithm, selecting the more highly valued choice
with probability 1−ϵ (ϵ-greedy Q-Learning, ϵ-QL). The final
opponent class was defined to play the same choice that the
agent did on the trial t − n, called n-back Mimicry (MC),
where n was randomly drawn between 1 and 5.

B. Deep Reinforcement Learning Model and Training scheme
Our agent is an Advantage Actor-Critic [31]. A 4-

dimensional input of the agent’s binary reward and choice at
the previous timestep are fed forward into an LSTM layer
of size 128 at each step, allowing the agent to integrate trial
information at long timescales [32]. The agent was trained
with backpropagation through time [33] using the RMSprop
optimizer [34]. We trained the network on the LC, MP 1, and
Pattern opponent classes, 310 opponents in total. Importantly,
the network never knows the identity of its opponent.

We introduced meta-learning by training our network on
multiple tasks in a continual manner as in [35]. To do so,
we interleaved opponents during training, randomly swapping
them out every 150 steps of the game, which we termed a
block. To examine the multi-task agent’s generalization ca-
pacity, we trained “single-task” agents of the same architecture
against individual opponent classes as an empirical baseline.

C. Opponent Representation Space
1) Linear Classifier Probe: We tested the agents against

opponents from our three training classes on 50 independent
blocks (22,500 total trials) and fit a logistic regression classifier
to predict the opponent identity from the recurrent activity in
these trials [36]. We then let the agent play for 450 trials
against other opponents (the washout period) and tested it
again on the three training classes. We trained two types of
classifiers: within- and between-block classification, in which
the test set was the last 50 trials of the training block and the
blocks after the washout period, respectively.

2) Adversarial Perturbation in Classifier Space: We per-
turbed the recurrent neural activity within the classifier sub-
space from one class to another, and asked whether the agent’s
performance became suboptimal as a result. Importantly, all
subspace axes were identified to be orthogonal to the policy
output axis, so any effect on behavior must be indirect. To do
so, we identified the orthonormal class projection matrix with
bases W ∈ Ro×n of dimensions o opponents by n recurrent
neurons, current state st ∈ Rn and the desired coordinates in
the character subspace ĉt ∈ Ro. Then, we reset activity to the
new coordinates within this subspace by

st+1 = st +WT (ĉt −W st) (2)

neurogym.github.io
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Fig. 1. a. Distribution of multi-task agent reward per trial for each opponent compared against two baseline agents. b. Choice behavior (Stay vs. Switch)
and reward of the multi-task agent against an opponent that plays Win-Stay/Lose Switch with some specified probability (x-axis). Black line indicates the
optimal strategy. c. Time-varying reward dynamics before and after a switch of the opponent. Shaded regions indicate standard error in all figures.

D. Representation similarity analysis (RSA)

R(oi) =
1

64
Σ64

j=0E[h|oi; sj ] (3)

Random binary input sequences three timesteps long
(sj , j = 1, 2, .., 64) were generated to probe how the network
represents opponents (oi). Equation 3 eliminates recent reward
and action effects by marginalizing over the agent’s recent
past. First, the network played against a particular opponent
oi for 50 trials, which empirically allowed the representation
to asymptote according to the linear classifier (Fig. 2a). We
then fed in the random sequence and extracted the recurrent
state h after the final input. By averaging the recurrent state
over every sequence, we thereby identified a unique hidden
state vector for each opponent, which we termed the recurrent
representation or representation center. To perform RSA, we
calculated the similarity between these recurrent representa-
tions using Pearson’s R for all pairs of opponents.

III. RESULTS

A. Agent generalizes, plays close to the theoretical optimal,
and learns to quickly adapt to new opponents.

When tested on the agent’s training opponents and novel
opponents–named within-training-distribution (WD) and out-
of-distribution (OOD) opponents respectively–the multi-task
agent’s performance was not significantly different from the
single-task agent, and it exceeded that of the untrained agent
for all opponents (Fig. 1a). This indicates that multi-task
training provides the ability to generalize on all OOD opponent
types we defined, although it remains unclear how the agent
can perform against other OOD opponents such as mixture
strategies.

Next, we assessed the performance of the multi-task agent
against opponents with a known optimal strategy and found
that it approaches this optimum. For example (Fig. 1b),
we tested the agent against an LC opponent that modulates
its probability of playing the Win-Stay/Lose-Switch (WSLS)

strategy based on a single parameter in b2 at position t − 1.
To maximize reward, the agent needs to decrease (increase)
its probability of staying on the same choice as the previous
trial when the opponent’s probability of Win-Stay/Lose-Switch
increases (decreases). Our agent does so optimally within the
training domain, P (WSLS) ∈ [0.3, 0.7], and it generalizes
well to lower probabilities.

Over a subset of opponents for which the agent’s perfor-
mance can be unequivocally assessed (max reward > 0.5), we
found that the multi-task agent adapted its performance to the
new opponent within only 20 time steps (Fig. 1c). Thus, after
training against multiple classes of opponents, the network
learned to quickly infer novel strategies and adapt its behavior
accordingly.

B. Distinct within-distribution opponent representations exist
in the recurrent space and are necessary for adaptive behavior.

To understand how the multi-task agent plays against novel
OOD opponents, we analyzed how these opponents are sep-
arated in the recurrent activity of the network. With the
linear classifier method, we hypothesized that if the agent had
learned a stable representation of opponent character, then the
classification accuracy should be maintained across time and
be independent of past history (Fig 2a).

We could robustly decode the type of WD opponent with
95% accuracy after only 20 trials into a block, consistent
with the time course of behavioral adaptation (Fig. 1c). This
accuracy reached 100% after 50 trials and was maintained
in the test period, even persisting throughout the washout
period (Fig. 2a, Between-block Test). Perturbation of the
opponent representation to another region of the classifier
space significantly disrupted the agent’s performance (Fig. 2b):
reward dropped to random and classification accuracy fell to
zero. This indicates the causal contribution of the opponent
representation to the agent’s performance.



b c

PB

P1+2

MP 1

S-QL

LC

MC

ε-QL

AB

0.0

0.5

1.0

P
B

M
P

1+
2

M
P

 1

S
-Q

L

L
C

M
C

ε
-
Q

L

A
B

−20 −10 0 10 20 30

−20

−10

0

10

20

30d

t-SNE 1

t-
S

N
E

 2

MP1+2
ε - Q L

MC

AB
S-QL
LC
MP 1

PB

Classification
Reward

−4 −2 0 2 4 6 8 10
Time from Perturbation (steps)

0.0

0.2

0.4

0.6

0.8

1.0

P
(c

o
rr

ec
t)

0.2

0.4

0.6

0.8

1.0

C
la

ss
if

ie
r 

A
c
c
u
ra

c
y

a

0 50 100 150
Time (steps)

Within-block Train
Within-block Test
Between-block Train

Between-block Test
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C. Recurrent representations separate within- and out-of-
distribution opponents and motivate multiple mechanisms of
generalization.

Although on paper the out-of-distribution (OOD) classes
are distinct from the within-training-distribution (WD), some
OOD opponents may play similarly to WD opponents. Here,
the agent could use a memorized training strategy. In order
to assess how the agent generalizes, we sought to compare
network representations of OOD strategies to WD ones. After
identifying robust neural representations of WD opponents
(Fig. 2a,b), we examined their relationship to the OOD oppo-
nent states using Representational Similarity Analysis (RSA,
[37]).

Figures 2c and 2d depict the same representations of op-
ponent character in different manners. By averaging the RSA
over opponent classes (Fig 2c), we identified that only two
OOD classes are very similar to the WD opponents (bold
labels in Fig. 2c): MP 1+2 and S-QL. No opponents are
very similar to the Pattern-Based opponent (PB). Because
this visualization does not display relationships between in-
dividual opponent strategies, we reduced the 503 opponent
representations with a 2-dimensional t-SNE and plotted the
results in figure 2d. t-SNE nonlinearly reduces dimensionality
by placing local clusters of data points near each other on
the 2-D plane. Fig. 2d clearly shows multiple groups of out-
of-distribution opponents that are distinctly separate from the
training set (for example, the teal cluster of ϵ-QL opponents
in the bottom right). With this in mind, we sought to identify
how the neural activity distinguished OOD opponents from
the WD distribution.

We hypothesized three possible mechanisms of similarity-
based generalization: 1) template-matching in which the net-
work adopts one of the learned strategies, 2) interpolation in
which the network maps the novel opponent to one of the
learned categories of opponents, and 3) extrapolation in which
the network might use its learned representations beyond
specific strategies or opponent categories. For example, the
agent might template match by using a memorized strategy it

had learned against an LC opponent with particular parameters
in the training set. It might interpolate by using the abstract
strategy it had learned for LC opponents, but identifying
parameters not observed in the training set. Finally, the agent
might extrapolate by combining strategies, swapping between
strategies, or doing something completely different.

We probed the mode of similarity-based generalization
for each of the OOD-opponents by comparing them to WD
recurrent representations with two measures: The minimum
Euclidean distance to a WD recurrent representation, and the
Euclidean distance to an LC opponent with parameters that
best fit the OOD opponent’s strategy, which we identified via
logistic regression on the opponent’s behavior (LC mapping,
Fig. 3a). An OOD center close to a WD center suggests
template-matching, whereas a shorter distance to the best-
fitting LC strategy suggests interpolation. When both distances
were relatively large, we labeled the strategy as extrapolation.
We empirically set a distance of 1 to be the maximum value
for both template-match and interpolation (boundaries in Fig.
3a, further results do not depend on precise value). We found
that the majority of OOD opponents (129 of 193) fell in the
template-match region (Fig. 3a, green region, some opponents
not pictured). 42 opponents were classified as extrapolation.

D. Extrapolation opponents predominate regions of the man-
ifold rarely occupied by within-distribution opponents.

Next, we investigated how the extrapolation opponents
differ from the others. We asked whether the WD dynamics
operated on a low-dimensional manifold, and if the OOD
dynamics also fell on that manifold. We performed Principal
Component Analysis (PCA) on recurrent states from all WD
opponents and calculated the explained variance ratio of the
OOD states on these PCs. We identified that 95% of the WD
variance was explained by the first 10 PCs, with the first
two components explaining 60% (Fig. 3b). These same 10
PCs summarize roughly 92% of the variance for all OOD
classes, indicating that their dynamics also lie on the within-
distribution opponent manifold.
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Given that the first two PCs explain a majority of the
variance and the cumulative variance curves for OOD states
differ from the WD curve most drastically in these PCs
(Fig. 3b), we asked how the dynamics along these two PCs
differed in the OOD states. We extensively tested the agent
against each opponent and estimated the density of recurrent
states in the first two PCs using a Gaussian Kernel Density
Estimator. We plot the results as a heatmap in figures 3c-f.
The majority of extrapolation states are localized in regions
where there is low or zero density in the WD case, near the
edge of the overall distribution. We quantified these states
and found that roughly 50% of the cumulative density for
the extrapolation distribution existed in regions of the WD
distribution with density less than 0.001, making up less than
5% of the WD distribution. This was not the case with the
other generalization types, which followed the WD CDF much
more closely and appear more similar to WD in Fig 3d,e.
Finally, the distance between the extrapolation representations
had an average Euclidean distance of 5.13 from the center of
the entire distribution, whereas for template match, interpolate,
and WD, this value was significantly lower, at 3.34, 3.78
and 3.6 respectively. Together, these results suggest that the
extrapolation states lie on the edge of the learned manifold, in
regions rarely occupied by WD states.

IV. CONCLUSION

By learning to interact in a competitive game with different
types of opponents, we showed that our recurrent neural
network had developed a dynamical representation of strategy.
This representation has a global structure similar to [14].
The recurrent space additionally has a hierarchical structure
similar to the network of [38], where broad regions in a
low-dimensional manifold define different contexts and local
dynamics govern online learning and decision-making.

By studying our agent’s neural representations for unseen

opponents, we identify possible mechanisms for how neural
systems may solve the most important problem of ToM:
adapting to novel social interactions. Given our results in
Figure 3, we propose that learned opponent representations
can be dynamically mixed in a neural network to give rise to
new representations that recombine information from multiple
training opponents. Two crucial features that provide this
capacity are the continuous recurrent space, which allows
dynamics to move between representations, and recurrent
dynamics that constrain activity to the learned manifold. Based
on our final results, we tentatively suggest that on-manifold
extrapolation may be one possible mode of generalization, but
more work is required to verify its existence in our network,
as PCA does not identify the nonlinear manifold itself.
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