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Abstract—Emergent communication research often focuses on
optimizing task-specific utility as a driver for communication.
However, human languages appear to evolve under pressure
to efficiently compress meanings into communication signals by
optimizing the Information Bottleneck tradeoff between informa-
tiveness and complexity. In this work, we study how trading off
these three factors — utility, informativeness, and complexity —
shapes emergent communication, including compared to human
communication. To this end, we propose Vector-Quantized Vari-
ational Information Bottleneck (VQ-VIB), a method for training
neural agents to compress inputs into discrete signals embedded
in a continuous space. We train agents via VQ-VIB and compare
their performance to previously proposed neural architectures in
grounded environments and in a Lewis reference game. Across
all neural architectures and settings, taking into account com-
municative informativeness benefits communication convergence
rates, and penalizing communicative complexity leads to human-
like lexicon sizes while maintaining high utility. Additionally,
we find that VQ-VIB outperforms other discrete communication
methods. This work demonstrates how fundamental principles
that are believed to characterize human language evolution may
inform emergent communication in artificial agents.

I. INTRODUCTION

Good communication is a critical component of successful
teams of humans and artificial agents, but differing notions of
“good” makes training agents to develop such communication
challenging. One view of communication focuses on utility
by framing languages as successful to the extent they enable
high task performance. Emergent communication literature,
wherein agents learn to communicate while optimizing a
task-specific reward or utility, emphasizes this view [1–6].
However, this approach may lead to communication that is too
complex for humans to understand [7] or has slow convergence
rates [8], implying that additional constraints are needed in
order to guide agents toward human-like communication.

Here, we use constraints from cognitive science by building
upon a recent line of work that argues that human languages
evolve under pressure to efficiently compress meanings into
communicative signals [9–13]. This notion of efficiency is
formulated in terms of the Information Bottleneck (IB) prin-
ciple [14], which is a general information-theoretic principle
with broad scope in machine learning [15–19], and in this
context, it can be interpreted as a tradeoff between the com-
plexity and informativeness of communication [9]. Intuitively,
complexity corresponds to the number of bits that are needed
for communication, and informativeness corresponds to how
well a listener can infer the speaker’s intended meaning

regardless of a specific task (e.g., humans understand what
“blue” means regardless of any specific task, which may be
“avoid the blue box” or “find a blue cup”). We hypothesize
that taking into account complexity and informativeness, in
addition to optimizing a task-specific utility function, may
help guide artificial agents toward more natural, human-like
communication systems.

We test this idea by training teams of artificial agents to
optimize a tradeoff between maximizing task utility, maxi-
mizing communicative informativeness, and minimizing com-
municative complexity, as depicted in Figure 1. To this end,
we extend prior work [20, 21] and propose Vector-Quantized
Variational Information Bottleneck (VQ-VIB), a method for
training neural agents to compress inputs into signals, while
maintaining a discrete (symbolic) signal representation that is
embedded in a continuous space. In experiments, we find that
training to increase informativeness improves the convergence
rate of emergent communication to high-performance com-
munication, while annealing the complexity loss generates a
spectrum of learned communication, which we show aligns
with a variety of human languages. Additionally, we find
that VQ-VIB appears better able to achieve high utility for
the same complexity and informativeness than other discrete
communication methods. This suggests a promising avenue for
supporting human-robot communication by instilling inductive
biases inspired by cognitive science.

II. RELATED WORK

Here, we describe related work in emergent communication,
including in a specific color domain which we use; we include
approaches for measuring informativeness and complexity in
Section III. Generally, in emergent communication settings,
researchers train agents to accomplish a cooperative task
in which communication should enable better task perfor-
mance [3, 5, 22–24]. Some works simplify communication
by discretizing communication, by adding noise to the en-
vironment, or passing communication through a centralized
message processor; these methods all correspond to limiting
complexity [21, 25, 26]. At the same time, other works find
that auxiliary losses designed to create “meaningful” com-
munication improve convergence rates [8, 27, 28], often in-
spired by notions adjacent to informativeness. Color reference
games have been widely used in emergent communication
literature [1, 29–31], mirroring the centrality of color naming
for studying humans’ semantic categorization and language



(a) Theoretical Framework

Informativeness := −E[d(X, X̂)]

Complexity := I(X,C)

Utility := U(X,Y )

(b) Simplified Architecture. A speaker, S, maps an input, x, to a communication signal, c. A listener,
L, takes an action, y, and a decoder, D, reconstructs x. Informativeness is negatively related to
the expected distortion between x and x̂; complexity is defined as the mutual information between
X and C; utility can be any given task-specific reward function or loss.

Fig. 1: Our theoretical framework and training losses allow us to weigh tradeoffs between utility (λU ), informativeness (λI ),
and complexity (λC) to guide properties of emergent communication.

evolution [32]. Most relevant to our work is Zaslavsky et al.
[9]’s finding that color naming systems across languages (from
a large-scale, cross-linguistic dataset, the Word Color Sur-
vey [WCS; 33]) attain complexity–informativeness tradeoffs
that are near-optimal in the Information Bottleneck [IB; 14]
sense. Chaabouni et al. [31] further showed that AI agents
can learn IB-efficient color naming systems by playing color
reference games (and see [30] for a related study using dif-
ferent notions of efficiency). While emergent communication
literature has begun to rediscover the importance of complexity
and informativeness in communication, these terms have rarely
been explicitly recognized, whereas we include terms for
utility, informativeness, and complexity in training agents.

III. TECHNICAL APPROACH

Here, we show how to adapt standard neural architectures
to enable informativeness- and complexity-based objectives.
We then introduce a new neural architecture, Vector-Quantized
Variational Information Bottleneck (VQ-VIB), for learning
complexity-limited discrete representations in a continuous
space. Lastly, we combine utility, informativeness, and com-
plexity terms into an overall objective.

A. Information Bottleneck for Semantic Communication

We adopt and extend Zaslavsky et al. [9]’s widely-supported
IB framework for semantic communication [10–13]. In this
framework, speakers and listeners jointly optimize the IB
tradeoff between the complexity and informativeness of their
communication system. A speaker is characterized as a prob-
abilistic encoder q(c|x) that, given an input, x ∼ p(x), gener-
ates a signal, c. A listener is characterized as a probabilistic
decoder q(x̂|c), that given c aims to reconstruct the speaker’s
input. Complexity is measured by the mutual information be-
tween the speaker’s inputs and signals, I(X,C). Informative-
ness is measured by the degree to which the speaker’s mental
representation of x matches the listener’s mental representation
of x̂. In general, these mental representations are defined by
probability distributions, m and m̂ respectively, over some
feature space. In that case, minimizing the expected Kullback-
Leibler (KL) divergence E[D[m∥m̂]] amounts to maximizing
the informativeness of the communication. This yields the

following optimization principle: min I(X,C)−βE[D[m∥m̂]],
where β is a tradeoff parameter. It has been shown that this
principle is equivalent to the IB principle [9].

Solving this optimization problem directly is challenging in
large scale domains and with agents that are parameterized
by neural networks. To address this, we take a Variational
Information bottleneck [VIB; 18] approach, in which an upper
bound is optimized, similar to ELBO in Variational Autoen-
coders [VAEs, 34] and β-VAEs [35]. We also approximate
informativeness by an autoencoding loss, d(x, x̂), defined by
the mean squared error (MSE) loss of the speaker’s input and
the listener’s reconstruction.

B. Vector Quantized Variational Information Bottleneck

Our proposed neural architecture, the Vector Quan-
tized Variational Information Bottleneck (VQ-VIB), learns
information-constrained discrete communication in a contin-
uous space. Our technique combines prior work in discrete
representation learning [VQ-VAE, 20] with β-VAE [35].

1) Vector-Quantized Variational Autoencoder: First, con-
sider a simplified Vector-Quantized Variational Autoencoder
(VQ-VAE) architecture [20]. As in standard VAEs, an encoder
is a conditional distribution over latent representations, given
an input: q(z|x). A deterministic network maps from an input,
x, to a latent, z: we dub such encodings, z(x). Next, for a VQ-
VAE parametrized with K embedding vectors, ζ, in the latent
space, z(x) is discretized to a particular embedding vector, ζi,
by mapping to the nearest embedding vector.

2) β Variational Autoencoder (β-VAE): We also use no-
tions from β-VAE, a variational approach for generating
information-constrained continuous representations with neu-
ral nets. Following Higgins et al. [35], an encoder network
maps from an input to µ and σ, which are used as parameters
to a Gaussian distribution from which a latent representation,
z, is sampled. β-VAE networks are trained via a weighted
combination of a reconstruction loss and (β times) the KL
divergence of µ(x) and σ(x) from a unit Gaussian; this KL
loss corresponds to an upper bound of I(X,Z).

3) VQ-VIB Architecture: Here, we integrate VQ-VAE and
β-VAE for a method of generating discrete, information-
bounded representations. Our architecture, Vector-Quantized



Fig. 2: VQ-VIB architecture blends Vector Quantization and
Variational Information Bottleneck. The speaker encodes an
input, x, as parameters to a Gaussian, from which a commu-
nication vector is sampled and then discretized by mapping to
the nearest encoding, to produce communication, c.

(a) 9 Points (b) Uniform

Fig. 3: In particle-world environments, a speaker (clear) com-
municated to a listener (gray) to reach a desired landmark.

Variational Information Bottleneck (VQ-VIB), corresponds to
first using an encoder to sample a representation z in a contin-
uous space, followed by a quantization layer that discretizes
the sample by mapping to the nearest encoding ζ. This is
depicted in Figure 2 and is formally defined in Equation 1.
The likelihood of a communication vector, c, given an input, x,
corresponds to the likelihood that an encoding z, sampled with
parameters µ(x) and σ(x), is closest to an embedding vector
equal to c (Eq. 1). This intuitively corresponds to notions of
uncertainty over which “word” to use. One may compute an
upper bound on I(X,C) based on this uncertainty by using
the standard KL divergence used for Gaussians in a β-VAE,
using µ(x) and σ(x).

z ∼ N (µ(x), σ(x))

q(c|x) = P(c = argminζ [(z − ζ)2]
(1)

C. Overall Optimization

Here, we combine losses into an idealized objective function
to maximize, shown in Equation 2. This objective function is
the weighted combination of three terms, wherein we seek to
maximize a tradeoff between high utility, high informativeness
(low expected distortion d), and low complexity. Intuitively,
these three scalar weights form a simplex that describe a
range of communication from silence (minimizing complexity)
to task-optimized communication that does not generalize
(maximizing utility) to complete descriptions (maximizing
informativeness).

maximize λUU(X,Y )− λIE[d(X, X̂)]− λCI(X,C) (2)

Fig. 4: In the color reference game, agents observed colors
from the WCS Dataset [33].

Fig. 5: Top: In the 9 points environment, greater λI led
to faster convergence for VQ-VIB; Bottom: Annealing λC

decreased reward and complexity for all methods.

In practice, we train neural agents via gradient descent to
maximize approximations of these terms. Utility is represented
via the policy gradient (for RL settings) or a supervised loss.
Informativeness is computed via the negative MSE between
the speaker’s input and a decoder’s output, given the commu-
nication. Lastly, complexity is bounded by the KL divergence
between the speaker’s distribution over communication and
a fixed marginal (either a uniform distribution for onehot
communication, or a unit Gaussian for others).

IV. RESULTS

A. Particle Worlds

We trained agents in two types of 2D particle worlds, as de-
picted in Figure 3. In each environment, the speaker observed a
“target” landmark (in 9 points, there were 9 landmarks at fixed
locations, whereas in Uniform, the landmarks were spawned
a random locations) and communicated to the listener. The
team reward was the negative distance from the listener to
the target, so agents learned to communicate about the target
location. We trained agents with Multi-Agent Deep Determin-
istic Policy Gradient [MADDPG; 3] and compared continuous
(real-valued), onehot, VQ-VIB, and prototype-based [Proto;
21] communication. All except continuous communication are
fundamentally discrete. For all environments and architectures,



Fig. 6: Color reference game results. Left: By annealing complexity, we recreated a range of near-optimal color-naming schemes
(black curve is the theoretical IB bound from [9]). Middle: 2D PCA of VQ-VIB Before communication shows relationships
between different clusters in the communication space. Right: mode maps of the agent (no box) and human (dashed box) color
naming systems, where each color chip from Figure 4 is colored by the centroid of its modal category.

training agents with higher λI improved training convergence,
as depicted for VQ-VIB in the 9-points environment in Fig. 5
(top). Furthermore, as we increased λC , all architectures
learned less complex, but also lower-utility, communication
(Fig. 5 bottom). However, VQ-VIB achieved higher utility,
for the same complexity, than other discrete communication
methods. These trends also appeared in the Uniform environ-
ment: 1) higher λI improved convergence, 2) increasing λC

created a spectrum of communication complexity and 3) VQ-
VIB outperformed other discrete methods.

B. Color Reference Games

We also trained agents in a color reference game in which a
speaker agent observed a target color (drawn from WCS data,
as shown in Fig. 4), and a listener agent had to distinguish
between the target and a distractor color. As in the previous
experiments, we found that increasing λI , for a fixed λC ,
improved convergence rates, and VQ-VIB agents typically
learned more complex communication than onehot agents.

We tested agents for λI = 1.0 while linearly annealing λC

to penalize complexity. As λC increased, the communication
complexity decreased (Figure 6 left). Over 5 random seeds, the
points in the plot, generated at each training epoch, closely ap-
proximated the IB upper bound for maximum informativeness
for a given complexity. The learned color naming schemes
at different complexity levels exhibited important patterns
(Figure 6 right). As complexity decreased, the number of
communication clusters emitted by VQ-VIB agents decreased
(visualized via 2-dimensional principle component analysis).
Clustering in the communication space was reflected in the
color space (e.g., “yellow” and “orange” merging). More gen-
erally, a least-squares linear correlation between the distance
between pairs of communication vectors and the distance be-
tween associated colors (in perceptually-based CIELAB space)
showed r2 = 0.97 ± (0.01) for VQ-VIB, whereas for onehot

communication r2 = 0.76 ± (0.03). That is, for VQ-VIB, if
two communication vectors were far apart in communication
space, they described colors that were far apart. This shows
a fundamental connection between the form and meaning of
communication used by VQ-VIB agents, which onehot-based
communication is architecturally unable to support.

Lastly, we compared the agent color naming schemes to hu-
man language data. For each of the 110 languages in the WCS
Dataset [33], we found the best-matching agent as determined
by gNID, a measure of dissimilarity of naming distributions
introduced by Zaslavsky et al. [9]. Example nearest languages
are shown in Figure 6 in dashed boxes. Annealing complexity
of artificial communication was necessary to generate similar
naming conventions for each human language. Furthermore,
while onehot and VQ-VIB Before achieved similar informa-
tiveness for the same complexity, VQ-VIB Before reached
higher utility, indicating an architectural advantage.

V. CONCLUSION

In this work, we explore the interplay of utility, informative-
ness, and complexity in emergent communication. To the best
of our knowledge, we are the first to directly optimize agents
to communicate according to a combination of all three terms.
Rewarding informativeness led to faster communication con-
vergence, and penalizing complexity created more human-like
communication. While we focused on training agents entirely
in “self-play,” natural extensions of this work would include
supporting human-robot communication, wherein robots could
learn partner-specific communication by appropriately con-
straining complexity and a small amount of supervised data.
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