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Abstract—In order to achieve a widespread adoption of social
robots in the near future, we need to design intelligent systems
that are able to autonomously understand our beliefs and
preferences. This will pave the foundation for a new generation
of robots able to navigate the complexities of human societies. To
reach this goal, we look into Theory of Mind (ToM): the cognitive
ability to understand other agents’ mental states. In this paper,
we rely on a probabilistic ToM model to detect when a human
has false beliefs with the purpose of driving the decision-making
process of a collaborative robot. In particular, we recreate an
established psychology experiment involving the search for a toy
that can be secretly displaced by a malicious individual. The
results that we have obtained in simulation show that the agent
is able to predict the mental states of the humans and detect
when false beliefs have arisen. We plan to expand these findings
to a real-world human-robot interaction setting.

I. INTRODUCTION

As autonomous robots become more prevalent in our daily
lives, it is important for them to be capable to adapt to a
variety of social situations. A social robot is an intelligent
agent specifically designed to operate in human environments,
to interact with people and to adapt its behavior to their
partner’s needs, preferences and personality. The emphasis of
the robot’s ability to adapt to different users is often known as
“personalization” [10]. The latter has been proven to enhance
user engagement in long-term human-robot interaction (HRI)
and to foster rapport and trust for tasks such as education,
rehabilitation and elderly care [10, 11].

The aim of our study is to design an artificial cognitive
architecture for autonomous robots that is able to personalize
its behavior based on the user’s mental states. In order to do
so, we tap into the domain of psychology to computationally
model a cognitive skill known as Theory of Mind (ToM):
this is defined as the ability to infer other’s mental states,
such as beliefs, desires and intentions (often known as BDI),
in order to predict behavior [14]. ToM is largely studied
in the psychological literature, especially for the purpose of
understanding the cognitive development of infants and how
they perceive the world around them [5, 7].

Several experiments and procedures have been proposed,
over the years, to assess ToM abilities in infants. One of the
better-known tests is the “false belief understanding”, which
has been largely used to evaluate whether preschoolers can

understand people’s mental states, in particular their beliefs
for the purpose of action anticipation. More specifically, some
of these tests aim to evaluate whether a child could understand
when a person has a belief that contradicts reality [17, 3].

In this paper, we present an artificial intelligence system that
is able to detect false beliefs. This is a critical skill to possess
for a social agent involved in collaborative tasks or caring
for elderly people in a retirement homes. As an example, we
could benefit from this ability in a robot that keeps track of
some medications to prevent the patient from taking the wrong
ones. We take inspiration from a human-human experiment
involving a toy swapping game [4] to evaluate if the robot
can detect when a user has a false belief understanding and
determine the best collaborative course of action.

II. PREVIOUS WORK

Most of the literature about ToM comes from the psycho-
logical domain, but there has also been a growing interest from
the fields of robotics and artificial intelligence. One of the most
popular techniques to computationally design ToM-capable
agents is the use of Bayesian Networks (BN), a graphical
model for data analysis which can encode uncertainty in expert
systems [9]. This kind of model can easily represent the knowl-
edge and learning of infants by using a causal map: an abstract,
coherent, learned representation of the causal relations among
events [8, 6]. This approach was adopted by Vinanzi et
al. [16], who have developed a robot learning architecture
based on BNs able to estimate the trustworthiness of human
partners based on the understanding of their mental states.
Another relevant example comes from Baker et al. [1, 2],
who implemented a dynamical BN known as “Bayesian model
of ToM” (BToM), which uses Bayesian inverse planning to
represent how people infer other’s goals and preferences. This
model is combined with Partially Observable Markov Decision
Processes (POMDP) to represent the agent’s planning and
inference about the world. The model then uses Bayesian
inference to invert the planning and reconstruct the agent’s
joint belief state and reward function, conditioned on the
observations of the agent’s behavior in some environmental
context.

A different approach involves the use of neural networks.
Rabinowitz et al. [15] created ToMmet, which uses deep learn-



ing methods to learn about a family of POMDPs. Patacchiola
et al. [13] implemented a cognitive architecture for trust and
ToM in humanoid robots that relies on self-organizing maps
[12].

III. METHODOLOGY

A. False belief understanding in a collaborative task

Our objective for this experiment is to implement a com-
putational model of ToM that will allow a social robot to
understand when someone has a false belief and to help
them in the task at hand. To do so, we wish to replicate a
psychological experiment by Buttelman et al. [4]. The latter
is based on a setting which includes two human actors (the
searcher and the tricker), two boxes, a toy and a child who
is observing the scene. During the experiment, the searcher
places the toy in one of the boxes and right after the tricker
attempts to switch its position from the original container to
the other one. This can happen either in the presence of the
original actor, who is then aware of the swap (true belief
condition), or in their absence (false belief condition). At this
point, the searcher would approach the box in which they had
originally placed the toy and unsuccessfully attempted to open
it. The child was then asked to provide some form of help.

The results of the original experiments showed that, in the
true belief condition, the children would help the searcher
to open the box they committed to, even though the toy
was not there anymore. The participants figured out that the
adult had acknowledged the switch and that they wanted
to open the box for some other reason. In the false belief
condition, the children would open the box in which the toy
had been switched to, demonstrating their understanding of
the searcher’s false belief about the location of the object.

Our aim is to replicate the same experiment, substituting
an autonomous humanoid robot in place of the child. Our
artificial agent’s responsibilities will be, then, to infer the
mental states of the searcher to detect false beliefs and to
perform appropriate collaborative actions.

B. ToM cognitive architecture

In order to implement the same level of ToM in a robot, we
need a model capable of reasoning on the belief and desires
of an agent based on the observation of its actions. In the
context of this experiment, the robot needs to know where the
person believes the toy is located and what is their preference
regarding the boxes: are they interested in retrieving the object
or are they keen on opening the other box? We decided
to use BToM [1, 2] which uses Bayesian inverse planning
to represent how people infer other’s goals or preferences.
More specifically, the model exploits POMDPs to represent
how an agent behaves in an environment regarding its beliefs
and preferences about the world via the principle of rational
belief, which formalizes how the agent’s belief is affected by
observations in terms of Bayesian belief updating. The model
represents respectively the agent’s desires as an utility function
and the agent’s own subjective beliefs about the environment
as a probability distribution, which may be uncertain and may

Fig. 1: Experimental setting. The labels represent the different
possible states in which the human and he object can be.

differ from reality. As a result, the model is designed as a
dynamic BN (DBN) to symbolize how external and internal
elements, such as agent’s location, observations, preferences
and beliefs, can influence the agent’s behaviors over time to
complete a specific task. The process to compute the observer’s
belief and reward inference of the agent, is similar to the
“forward-backward” algorithm in hidden Markov models.

This model was originally designed for an agent searching
for its preferred food truck in a 2D environment. One of our
contributions will be to adapt this model to perform its tasks
in a more complex scenario that involves dynamical elements
(such as the position of the humans and the toy).

C. Simulation

We performed a simulated experiment to analyze the
performance of our model before deploying it on a real
robotic platform. The simulation included the environment as
depicted in the original paper [4] wherein a human, a toy and
two boxes were present (Figure 1). The actor is able to enter
and leave the room and move to one of the boxes, while the
toy can either be placed outside the boxes or in one of them.

To evaluate the predictions generated by our model, we have
randomly generated sequences of behaviors for the simulated
human agent. This process is conducted in two steps: initial-
ization and generation. The initial phase is the same for every
iteration: the agent is outside the room, and the toy is outside
the boxes. The human moves into the room, takes the toy and
places it in one of the boxes. The second phase depends on a
set of parameters:

• The “rate of false belief” Rfb ∈ [0, 1] determines the
probability that the human agent will leave or not the
room before the toys are switched, i.e. the rate of true or
false belief instances.

• The “alternate false belief” Afb ∈ [True, False] in-
structs the generator to change successively or randomly
the belief condition between iterations.

• The “rate of preference” Rp ∈ [0, 1] represents the prob-
ability that the human is interested or not in retrieving
the toy.



Fig. 2: Human agent’s preference prediction, obtained by fixating Rfb = 0.5 and varying Rp. (a) Ap = True, closed. (b) Ap = True,
open. (c) Ap = False, closed. (d) Ap = False, open.

Fig. 3: Human agent’s preference prediction, obtained by fixating Rfb = 0.5, Afb = True,Rp = 0.5, Ap = True and closing the model.
Each graph is obtained by setting the rewards as displayed in Table I.

Rewards
Preference Action a b c d

Go to the box with the toy 10 10 50 100Interested in the toy Go to the box without the toy -10 5 25 25
Go to the box with the toy -10 5 25 25Not interested in the toy Go to the box without the toy 10 10 50 10

TABLE I: Rewards for the policies generated by the model to infer the preferences of the agent.

• The “alternate preference” Ap ∈ [True, False] instructs
the generator to flip successively or randomly the prefer-
ence of the human agent between iterations.

The generation process is described by following procedure:
1) Determine the belief condition (true or false) and the

human’s preference (interested in the toy or not).
2) The human moves back to the initial position (state

{1,0}).
3) If the agent is in the false belief condition, it leaves the

room (state {0,0}). If, instead, it is in the true belief
condition, it stays in the room (state {1,0}).

4) The toy’s position is randomly switched or preserved.
5) If the agent is outside, it re-enters the room.
6) The agent moves to box 1 (state {1,1}) or 2 (state {1,2})

according to its current belief and its preference: if it is
interested in the toy, it will move to the box where it
believes the toy is located; if it is not the case, then it
will move to the box where it believes the toy is not
located.

We define the size of the path Spath as the number of

times in which the agent approaches the boxes during the
generation phase, i.e. the number of times the above procedure
is reiterated. This enables us to assess the model’s performance
over time and determine whether it can accurately track beliefs
and preferences throughout several iterations. It is mostly
important regarding the need of using social robots for long-
term interactions and that can be aware of the mental state of
human over the time.

IV. RESULTS

To evaluate the performance of the model, we generate a
number of different paths for the human agent by varying the
associated parameters. For each of the trials described below,
we generated 500 paths with Spath = 8.

Some of the following evaluations are calculated only when
the human is located next to the boxes (states {1,1} and {1,2}
in Figure 1. We call this the “closed” condition. If, on the
contrary, the evaluation can happen at any point of the path, we
say that we are evaluating the model in the “open” condition.



Fig. 4: Human agent’s belief prediction, obtained by fixating Rp = 0.5 and varying Rfb. (a) Afb = True. (b) Afb = False.

A. Evaluation of the human’s preferences

To analyze if the model was able to correctly identify the
simulated human’s preferences, we have set Rfb = 0.5 and
varied Rp between values of 0, 0.25, 0.5, 0.75, and 1. For
example, a rate of preferences of 0.5 means that 50% of the
time the agent will move to the box wherein it believes the
toy is located, while the remaining 50% of the time it will go
to the other box.

The evaluation of the agent’s preferences is shown in Figure
2. The four charts are produced by varying Ap and by opening
and closing the model. For example, Figure 2a reflects the
condition where the model is closed and Ap = True, Figure
2b shows the performance measured when the model is closed
and Ap = False and so on. As described by the graphs, the
model can infer the agent’s preferences corresponding to the
ratio’s values we gave, even when we set to a rate equal to
0.5, wherein the agent’s behavior will change half of the time.
However, the model has a lower performance when inferring
the agent’s preferences by including all the states. Setting the
ratio to 0.5, the model inferred that the agent is interested in
the toy less than 40% of the time and close to 40% when we do
not alternate the preferences. We can explain that the model is
unsure about the agent’s preferences when this one is not close
to one of the boxes; otherwise, it can predict the preference
regarding which boxes it is going to visit. Figure 3 represents
the model performances with different rewards employed to
compute agent’s policies. There is not much impact on model
performances when using different rewards, as we can notice
on the bar charts, except for Figure 3c, wherein the model
predicted that the agent is majorly interested in the toy when
setting the ratio to 0.5. This result may indicate that the
variation between the rewards is too important, compared to
the reward in Figure 3b, or not that significant such as the
reward in Figure 3d. We can only observe this inconsistency
with Rp = 0.5, whereas for other values, we observe the same
pattern as with the other Figures.

B. Evaluation of the human’s beliefs

For the belief’s inference, we have set Rp = 0.5 and varied
Rfb between values of 0, 0.25, 0.5, 0.75, and 1. The results
depicted in Figure 4 show us that the model can accurately

infer the belief of the human agent regarding the value of
Rfb. For example, when Rfb equals 0.5, which correspond
to a change of belief condition half of the time, the model
can infer that approximately 50% of the time, the agent has
false beliefs understanding, and the remaining time, he has
true beliefs.

The current preliminary results are promising and they
validate the performance of our model in simulation. Indeed,
our model can accurately infer the agent’s preferences and
its beliefs even when we increase the variation of the agent’s
behaviour.

V. CONCLUSION

In this paper, we have presented our preliminary results
on a ToM-capable cognitive architecture for HRI. We have
discussed on the importance of false belief understanding for
collaborative agents and we have traced an arc that shows
how this mental skill is studied in both the psychological
and the computational domains. Finally, we have introduced
BToM [1, 2], a DBN that was originally used to determine the
desires of an agent in a 2D world. We have applied this model
to a more complex environment involving an established
psychology experiment used to test false belief understanding
in children [4]. Finally, we have conducted simulated tests to
evaluate the fitness of this model for our purposes and the data
we have collected are in line with our expectations. The next
step in this line of research will be to embed this model in
a social robot involved in a real-wold replication of the false
belief understanding experiment and to evaluate its ability to
correctly help its human partners in joint action scenarios.
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