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Abstract—How do people make causal judgments about oth-
ers? Prior work has argued that judging causation requires going
beyond what actually happened and simulating what would have
happened in a relevant counterfactual situation. Here, we extend
the counterfactual simulation model of causal judgments for
physical events, to explain judgments about other agents’ de-
cisions and interactions. In Experiment 1, a single agent chooses
what path to take to reach a goal. We find that participants’
judgments about whether the agent succeeded or failed because
of their decision are best explained by counterfactual judgments
about whether the agent would have succeeded had they acted
differently, rather than hypothetical judgments or heuristics. In
Experiment 2, one agent either helps or hinders another agent
from reaching the goal. Participants’ judgments about whether
one agent succeeded or failed because of another agent are
sensitive both to what would have happened in the relevant
counterfactual scenario, as well as what the other agent’s actions
reveal about their intentions.

I. INTRODUCTION

How do people evaluate others’ actions and decisions? From
everyday occurrences like road accidents, to large-scale events
like a global pandemic death toll, people attribute outcomes
not only to the physical world, but also to the actions and
omissions of other people [2, 14, 17, 19, 29]. Prior work has
suggested that counterfactual thinking plays an important role
in how people make causal judgments and explain others’
actions [6, 20, 21, 22, 25, 26, 27, 32, 39]. People not only
consider what someone else did, but also compare what
actually happened with what would have happened had that
person acted differently [12, 28]. These results suggest that
causal judgments and counterfactual reasoning are intimately
linked. However, little work has tried to model the cognitive
processes that underlie counterfactual reasoning [but see 10]
specifically as it applies to thinking about other agents.

In contrast, in the physical domain, the link between
causal and counterfactual judgments has been established more
firmly. Prior work has argued that people have an intuitive un-
derstanding of the physical world that is in important respects
similar to the kinds of physics engines used to render realistic
dynamic scenarios in computer games [9, 38]. Equipped with
such a game engine in the mind, humans can make inferences
about what happened in the past [11] and predictions about
what will happen in the future [5, 35]. Moreover, they can
use their mental model of the physical world to make causal
judgments. For instance, imagine a table on which two billiard

balls, ball A and ball B, collide with one another before ball
B rolls through a gate. Did ball A cause ball B to go through
the gate? Gerstenberg et al. [13] developed the counterfactual
simulation model (CSM) to capture people’s causal judgments
in situations like these. The CSM predicts that people compare
what actually happened with what they believe would have
happened in relevant counterfactual scenarios. The more clear
it is that ball B would have missed the gate if ball A not
been there, the more people are predicted to agree that ball
A caused ball B to go through the gate. The CSM yields
quantitative predictions by generating noisy simulations that
reflect people’s uncertainty in what would have happened in
the relevant counterfactual situation. These quantitative predic-
tions are closely aligned with participants’ causal judgments.
Eye-tracking data further reveals that people spontaneously
produce counterfactual simulations in the service of making
such judgments [10].

Recently, Gerstenberg [7] investigated whether counter-
factual simulations are necessary for understanding causal
judgments about physical events, or whether hypothetical
simulations suffice. The difference is subtle but important: a
hypothetical is about a possible future (would ball B miss the
gate if ball A were not there?), while a counterfactual is about
an alternative present, and requires re-imagining past events
(would ball B have missed the gate if ball A had not been
there?). Gerstenberg found that people’s causal judgments
about physical events were best explained by counterfactuals
rather than hypotheticals [30, 31].

Here, we build on these works by looking into situations
in which people make causal judgments about psychological
agents rather than physical objects. We develop a compu-
tational model of agents in a simple navigation task, and
explore whether in this socially evaluative setting, causal
judgments are also explained by counterfactual simulation.
People often have more uncertainty about agents than objects,
so it’s possible that they reason about the two differently.
When judging whether an object caused an outcome, people
tend to imagine the counterfactual scenario in which that
object had not been there. Agent behavior, on the other hand, is
governed by much more than simple physical principles: it also
relies on principles of rationality that dictate how mental states
and abilities translate into actions given a particular situational
context. Numerous counterfactual contrasts are potentially



relevant – not only the scenario in which the agent had not
been there, but also one in which the agent had been stronger,
or smarter, or more moral, or replaced by a reasonable person
instead.

Furthermore, people have a strong, automatic tendency
to make social and moral evaluations when presented with
agentive behavior [e.g. 16], and even 6-month-old infants
show preference towards agents that are helpful towards others
rather than neutral or hurtful [15]. Such social evaluation
may complicate causal judgments. Causal attributions are
influenced by social norms and moral considerations [1, 24].
They can also be potentially interpreted as attributions of
blame, responsibility, or accountability instead, prompting
consideration of other factors such as intentions that can create
additional ambiguity about the causal judgment [28, 33, 36].
Here, explore how social evaluation interacts with counter-
factual simulation when it comes to causal reasoning in rich
multi-agent settings.

The rest of the paper is organized as follows. We first
present the environments and the model, and then describe two
experiments investigating causal judgments about outcomes
that result from two specific counterfactual contrasts. In Exper-
iment 1, we look at an agent’s decision between two courses of
action. In Experiment 2, we explore a second agent’s helping
or hindering interactions with the first agent.

II. COMPUTATIONAL MODEL

A. Environments

Our settings consist of 2D grid worlds in which agents and
objects can interact. Different agents can have different goals
and available actions. Here, we consider a paradigm in which
one agent has 10 timesteps to reach a star, and a possible
second agent can either help or hinder the first agent. On each
timestep, agents can move in any of the four cardinal directions
or stay in place, but cannot move through walls or black boxes.
Formally, this setting can be represented as a decentralized
multi-agent Markov decision process (Dec-MDP), as a tuple
⟨n,S,Ai, Ri, T ⟩ where n is the number of agents, S is the
shared state space, Ai is the action space for agent i, Ri :
S × Ai → R is the reward function for agent i, and T : S ×
A1 × . . .×An → S is the overall state transition probability.

Like the CSM, our simulation model operates over a gen-
erative model – in this case, one that dictates how agents plan
and act within the bounds of the grid world. The simulation
model then implements operators that allow for hypothetical
and counterfactual simulations to be run.

B. Generative model

Motivated by prior work that formalizes action understand-
ing as inverse planning in MDPs [3, 4, 18, 34, 37], we
assume that humans have an intuitive psychological theory
of how agents with rationality based on their mental states,
their capacities, and the situational constraints. Our generative
model implements this as solving the Dec-MDP, with rollouts
of the resulting agent policies πi specifying what happens over
time. We record a rollout of all the policies as a history of

states H1:T where T ≤ 10 is the length of the trial.

C. Modeling causal judgments

Given the generative model, the hypothetical and coun-
terfactual simulation models generate predictions about what
would or would have happened in alternative scenarios. We
describe how they operate in turn, and then how those predic-
tions give rise to causal judgments.

1) Hypothetical simulation

The hypothetical simulation model predicts the outcome if
the agent(s) were to take different actions from the initial
state. Hypothetical conditions can be thought of as alternative
policies π′

i. For example, we can imagine and model how
an agent would act if they were to have a different goal or
different capacities (i.e. action space). The model takes the
initial state and runs all π′

i forward, incorporating potential
stochasticity from the transition function T . It simulates 1000
such runs to generate a hypothetical success rate.

2) Counterfactual simulation

Counterfactual conditions can be similarly thought of as
alternative policies π′

i. The counterfactual simulation model
also runs all π′

i forward, but importantly conditions on any
object state changes that occurred in H1...T . That is, T loses
some stochasticity because any object state changes in the first
T timesteps are no longer simulated probabilistically. Instead,
all object states are maintained exactly as they are throughout
H1...T . For the (10−T ) remaining timesteps, if any, the model
resumes the original transition probabilities. The model runs
1000 simulations to generate a counterfactual success rate.

Our central research question is how people make causal
judgments about outcomes that result from agents’ behavior.
We want to model their judgments about what happened
because of e.g. the actions an agent took, or a second agent’s
influence. The simulation models predict that people’s judg-
ments are a function of their subjective beliefs about how
likely the outcome would be or would have been different
under relevant alternative policies. That is, they compare the
actual outcome to the corresponding success rates, and make
predictions based on the degree of difference.

An alternative explanation for people’s causal judgments
is that they don’t perform any sort of mental simulation and
instead consider only what actually happened. They may use
properties of the observed scene as heuristics, such as how
long the situation lasted (T ) and what state the environ-
ment was in [40]. In our experiments, we will compare the
simulation models to a heuristic model as well as one that
additionally incorporates social evaluation.

D. Modeling intention judgments

In order to account for the possible influence of social
evaluations, namely inferences about one agent’s intention
towards another based on observations of their interactions,
we additionally developed an intention inference model. The
intention model uses Bayesian inference to infer one agent
i’s intention to help or hinder agent j, given observations



of agent i’s actions. First, we construct the value function
Qi : S × Ai → R, which represents agent i’s expected
future reward for taking a given action in a given state. Qi

is initialized to reflect the “value” that ai adds to agent j’s
pursuit of the goal. We define “value” to be a function of the
change in the number of shortest paths available to agent j
towards the goal, and also of the change in the length of the
shortest path, such that increasing availability and decreasing
length both add positive value. This represents the extent to
which agent i helps agent j reach the goal by choosing ai.
There is an additional cost of 1 for any movement action and
a cost of 2 for any push or pull action. Altogether, given gi,
agent i solves for its helpful or hinderful policy through Q-
learning.

Next, we use the Qi values at the end of training to infer
gi. For all ai ∈ Ai and s ∈ S, we compute

p(ai | s, gi) ∝ exp
(
β ×Qi(s, ai)

)
.

p(gi | s, ai) ∝ p(ai | s, gi) ∝ exp
(
β ×Qi(s, ai)

)
Taking the softmax over agent i’s expected reward ensures

that occasional nonoptimal actions are accounted for via the
free parameter β, which captures agent i’s level of randomness
when acting.

Given the observed state sequence s1:T and action sequence
a1:Ti over a trial’s T timesteps, the intention model uses Bayes’
rule to compute the posterior probability of gi:

p
(
gi | s1:T , a1:Ti

)
∝ p

(
a1:Ti | s1:T , gi

)
p(gi)

Normalizing this posterior over all possible goals – in our
settings, either help or hinder – yields the final intention
prediction for agent i. In Experiment 2, we asked participants
to make judgments about an agent’s intentions on a continuous
scale from ”definitely helping” to ”definitely hindering”, with
intermediate values reflecting more uncertainty. Thus, to quan-
titatively compare our inference model predictions against par-
ticipants’ continuous judgments, we left the p(gi | s1:T , a1:Ti )
as relative probabilities.

III. EXPERIMENT 1: SINGLE AGENT DECISIONS

In Experiment 1, we investigated how people may attribute
outcomes to the decisions of a single agent. We tested how
well causal judgments about what happened can be explained
by hypothetical simulation of what would happen if the agent
were to make a different decision, as well as counterfactual
simulation of what would have happened had the agent made
a different decision, and an alternative heuristic model.

A. Environment

In this experiment, a single agent has 10 timesteps to reach
the star via one of two paths, red or blue (see examples in
Figure 1). The paths may contain doors that randomly open
or close with probability pdoor on each timestep. The agent can
only pass through a door if it is open, and also has a small
chance pstall of stalling on each timestep, which introduces

some uncertainty about its behavior. Formally, we have n = 1,
A1 = {left, right, up, down, stay}, and T is a function of the
state s ∈ S, the agent’s action a ∈ A1, pdoor, and pstall.

B. Methods

1) Participants

The experiment was preregistered and posted on Prolific
(hypothetical condition: https://osf.io/zw37k; counterfactual
condition: https://osf.io/cxn3s; causal condition: https://osf.io/
r8sdh). 150 participants (age: M = 35, SD = 14; gender: 87
female, 57 male, 2 trans male, 4 non-binary) were recruited
and compensated $11/hour. They were randomly assigned to
the hypothetical, counterfactual, or causal conditions with
n = 50 in each.

2) Procedure

Participants were introduced to the grid world setting where
the agent (called the “player”) took the red or blue path on
each trial and then either won or lost. Both paths always looked
the same initially, so there was no better or worse choice. All
participants were guided through instructions with an example
trial and then required to answer four comprehension questions
correctly. During the main task, they saw 18 different trials in
a randomized order.

In the hypothetical condition, participants were asked before
seeing the agent’s choice in each trial how much they agreed
with the statement that “the player would win if they took
the [color] path this time,” where [color] was the color of
the actual path (“red” or “blue”). Participants answered on a
continuous slider from “not at all” (0) to “very much” (100)
and then saw what actually happened afterward. We told them
they would just be viewing feedback on their judgments in
order to illustrate how often the doors randomly opened and
closed. Thus, they were able to get a sense of pdoor over
the course of the experiment. The counterfactual condition
was similar except that on each trial participants first saw
everything that happened, then were asked how much they
agreed that “the player would have won if they had taken
the [color] path this time,” where [color] was the color of
the alternative path. Above the question, we displayed a video
replay of what happened, which participants could re-watch as
many times as they liked. The causal condition was identical
to the counterfactual condition except the statement read, “the
player [outcome] because they took the [color] path this time,”
where [outcome] was the actual outcome (“won” or “lost”) and
[color] was the color of the actual path. The experiment took
an average of 10 (SD = 6) minutes to complete.

3) Design

Across the 18 trials in the experiment, we manipulated
whether the agent won by reaching the star with more than
one timestep left (“actual win”), just barely won or lost by
exactly one timestep (“actual close”), or clearly lost by more
than one timestep (“actual loss”). Similarly, we manipulated
what the outcome would have been had the agent taken the
alternative path (“counterfactual win”, “counterfactual close”,

https://osf.io/zw37k
https://osf.io/cxn3s
https://osf.io/r8sdh
https://osf.io/r8sdh


(a) The door on the blue path stayed closed,
so the agent would have lost.

(b) The door on the blue path opened after six
timesteps, so the agent would have just barely
succeeded.

(c) The door on the blue path opened early,
and the agent would have succeeded.

Fig. 1: Diagrams of a selection of trials from Experiment 1. In all three trials, the agent took the red path and succeeded because
the door on that path opened. However, what would have happened counterfactually if the agent had taken the blue path is
different. The solid purple lines show the actual path and dotted lines show counterfactual paths. The doors are annotated to
show state changes (e.g. C[6],O means the door was closed for six timesteps and then open for the rest).

“counterfactual loss”). The actual path was counterbalanced.
Furthermore, we created sets of trials where what actually

happened was identical, but what would have happened coun-
terfactually, i.e. had the agent taken the alternative path, was
different (see Figure 1 for an example). Thus, we would expect
the same hypothetical judgments within each set about what
would happen if the agent were to take the other path, but
very different counterfactual judgments about what would have
happened had the agent taken the other path, after the fact.

4) Modeling

For the generative model, we solve this MDP using shortest
path graph search given the choice of path. The hypothetical
simulation model takes the initial states of all doors and
runs the generative model of the agent on the alternative
path, simulating each door changing with probability pdoor on
each timestep. The counterfactual simulation model runs the
generative model on the alternative path, but conditions on
all door-state changes that were observed actually occurring
during the T timesteps. For instance, for trial 2 in Figure 1,
the model simulates the agent on the blue path with the door
on that path opening after six timesteps, like it actually did.
The two free parameters pdoor and pstall were fit to minimize
RMSE between model predictions and participants’ mean
causal judgments. The optimal values were pstall = 0.12 and
pdoor = 0.19.

As an alternative explanation for people’s causal judgments,
we also constructed a heuristic model that performs linear
regression over features of the final state (at timestep T ) in
each trial. It considers the outcome (2 factors: win or loss)
and the final states of the doors (5 factors: both open, both
closed, actual open and alternative closed, actual closed and
alternative open, or no doors).

C. Results & discussion

Figure 2 shows participants’ mean judgments com-
pared with corresponding simulation model predictions. The
model accurately captures participants’ hypothetical beliefs
(RMSEhyp = 11.10, rhyp = 0.83), although the correlation
is largely driven by the outlier. It also captures participants’
counterfactual beliefs (RMSEcf = 15.91, rcf = 0.94), which
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Fig. 2: Scatterplots of simulation model predictions and par-
ticipants’ mean judgments in the (A) hypothetical and (B)
counterfactual conditions in Experiment 1. The three exam-
ples from Figure 1 are labeled. Note: Error bars are 95%
bootstrapped confidence intervals, RMSE = root mean squared
error, and r = Pearson correlation coefficient.

had more range and clearly come apart from the hypotheticals.
Participants were much more confident about counterfactuals
they were able to see how the doors actually changed during
each trial and thus no longer had uncertainty about door
state changes in their simulations. Our model aligns closely
with participants’ judgments in both conditions, accounting
for sources of uncertainty in how the environment might
probabilistically change over time, and in turn how that might
affect the agent’s movements.

Figure 3 compares participants’ mean judgments in the
causal condition with predictions of the three models: hypo-
thetical simulation, counterfactual simulation, and heuristic.
For the simulation models, we directly used participants’
judgments from the corresponding conditions. Causal judg-
ments about the outcome are best explained by counterfactual
judgments about what would have happened had the agent
acted differently (RMSEcf = 15.67, rcf = 0.96). The heuristic
model performs decently (RMSEheuristic = 12.34, rheuristic =
0.9), although it has significantly more free parameters and
importantly fails to distinguish situation in which the same
events happened but at critically different times, such as
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Fig. 3: Participants’ mean judgments in the causal condition in Experiment 1 compared to predictions from the (A) hypothetical
simulation model, (B) counterfactual simulation model, and (C) heuristic model. The green points are trials in which the
counterfactual outcome would have been different from the actual outcome, and the red points are those that would have been
the same. The three examples from Figure 1 are labeled. Note: Error bars are 95% bootstrapped confidence intervals, RMSE
= root mean squared error, and r = Pearson correlation coefficient.

trials 2 and 3 (see Figure 3C). In more complex situations
with multiple events and intricate timelines, we expect the
counterfactual simulation and heuristic models to come apart
more. Causal judgments did not align well with hypothetical
judgments (RMSEhyp = 30.58, rhyp = 0.21).

In Experiment 2, we expand our setting to multiple agents
and explore how people’s intuitive understanding of others
applies not only to how a single agent acts in the world,
but also to how that agent may perceive and interact with
other agents. We explore how people can attribute outcomes
to others, and how causal reasoning in these instances grows
more complex as social reasoning also becomes involved.

IV. EXPERIMENT 2: MULTI-AGENT INTERACTIONS

Experiment 1 showed that causal judgments are best ex-
plained by counterfactual rather than hypothetical simulations.
Thus, we focus only on counterfactual simulations here.

A. Environment

In this experiment, a red agent has 10 timesteps to reach
the star. A second, blue agent has the ability to push or
pull boxes around and thus can either help or hinder the red
agent (see examples in Figure 4). Formally, we have n = 2,
A2 = A1∪ {push, pull}, and T is a function of the state
s ∈ S, the red agent’s action a1 ∈ A1, and the blue agent’s
action a2 ∈ A2. The blue agent’s reward function depends
on that of the red agent, such that R2 = αR1 where α is a
scaling factor representing the direction and strength of the
blue agent’s intentions. We use α = 0.5 if helping, α = −0.5
if hindering, and α = 0 if neutral.

B. Methods

1) Participants

The experiment was preregistered and posted on Prolific
(counterfactual condition: https://osf.io/2gekb; causal condi-

tion: https://osf.io/2w8mq; intention condition: https://osf.io/
c5ah). 150 participants (age: M = 35, SD = 13; gender: 80
female, 62 male, 5 non-binary, 3 undisclosed) were recruited
and compensated $11/hour. They were randomly assigned to
the counterfactual, causal, or intention conditions with n = 50
in each.

2) Procedure & design

The procedure and design was similar to that of Experi-
ment 1, featuring 24 different trials with varying combinations
of actual outcomes, counterfactual outcomes, and blue agent
intentions. In the counterfactual condition, participants saw
what happened in each trial and were then asked how much
they agreed that “the red player [would have / would still
have] succeeded if the blue player hadn’t been there.” We
used “would have” for trials in which the actual outcome was
a fail, and “would still have” if the actual outcome was a
success. Participants answered on a continuous slider from
“not at all” (0) to “very much” (100). The causal condition
was similar except that the statement read, “the red player
[outcome] because of the blue player,” where [outcome] was
the actual outcome, either “succeeded” or “failed”. Finally, in
the intention condition, participants were asked “What was the
blue player intending to do?” In this condition, they answered
on a slider from “definitely hinder the red player” (0) to
“definitely help the red player” (100) with the midpoint labeled
“unsure” (50). The experiment took an average of 12 (SD =
8) minutes to complete.

3) Modeling

We solve for both agents’ policies using Q-learning as
the generative model. The counterfactual simulation runs the
generative model with α = 0 to represent the counterfactual
scenario in which the blue agent had done nothing instead (as it
would have zero reward). pstall was again fit as a free parameter

https://osf.io/2gekb
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https://osf.io/c5ah
https://osf.io/c5ah


(a) The blue agent pulled the
box out of the way and the
red agent succeeded. If the
blue agent had done noth-
ing, then the red agent would
have failed.

(b) The blue agent hindered
by pushing the box and the
red agent failed, although the
red agent would still have
failed even if the blue agent
had done nothing.

(c) The blue agent appears
to potentially have intended
to help by pulling the box,
but made no difference to the
red agent’s actual path. The
red agent succeeded.

(d) The blue agent appears
to have attempted to help by
pulling the box, but inadver-
tently forced the red agent to
take a longer path. The red
agent ultimately failed.

(e) The blue agent did
nothing so their intentions
here may be unclear, al-
though they could have eas-
ily pushed the box in the
red agent’s way if they had
intended to hinder.

Fig. 4: Diagrams of a selection of trials from Experiment 2. The red lines indicate the red agent’s movements, the dashed
boxes show initial box locations, and the blue arrows indicate the blue agent pushed or pulled a box to its final location.
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Fig. 5: Scatterplots of (A) counterfactual simulation model
and (B) intention inference model predictions compared to
participants’ mean judgments in the corresponding conditions
in Experiment 2. The examples from Figure 4 are labeled.
Note: Error bars are 95% bootstrapped confidence intervals,
RMSE = root mean squared error, and r = Pearson correlation
coefficient.

with an optimal value of 0.1. In the intention inference model,
β = 0.5 was used.

To account for the possible influence of social evaluations,
namely inferences about the blue agent’s intentions, on causal
judgments, we also tested a linear model that uses both coun-
terfactual simulations and intention inferences as predictors.
In the intention condition of the experiment, participants’
responses ranged from 0 if they believed the blue agent
was definitely hindering, to 100 if they believed the blue
agent was definitely helping. We re-coded these values to
account for the outcome. We used the raw judgments if the
outcome was a success, and flipped them by subtracting from
100 if the outcome was a failure. The re-coded values thus
reflect the strength or certainty of the intention in congruence
to the direction of the outcome. These values, along with
counterfactual model predictions, were fit as fixed effects to
participants’ cause judgments.
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Fig. 6: Participants’ mean causal judgments in Experiment 2
compared to predictions from (A) the counterfactual simula-
tion model, and (B) a model combining both counterfactual
simulation and intention inference. The green points are trials
in which the counterfactual outcome would have been dif-
ferent from the actual outcome, and the red points are those
that would have been the same. Note: Error bars are 95%
bootstrapped confidence intervals, RMSE = root mean squared
error, and r = Pearson correlation coefficient.

C. Results & discussion

Figure 5 shows participants counterfactual and intention
judgments compared to corresponding model predictions. The
counterfactual simulation model tends to give fairly extreme
judgments (e.g. that the red agent would have succeeded
without the blue agent with either 0% likelihood or over 80%
likelihood), while participants were uncertain in many cases
such as trial 4. The high correlation (rcf = 0.93) is mostly
driven by the two clusters of points near 0 (in which both par-
ticipants and model agreed that the red agent would not have
succeeded) and 100 (in which both participants and model
were highly confident the red agent would have succeeded).
Currently, the only gradedness in model predictions comes
from pstall. Future work will focus on identifying other sources
of uncertainty in participants’ judgments in order to improve
the model and soften its predictions.



The intention inference model captures participants’ judg-
ments about the blue agent’s intentions well (rint = 0.97),
including cases in which intentions were unclear. For instance,
in trial 4 (see Figure 4(d)), the blue agent appears to have
attempted to help by moving a box that was blocking a
possible path for the red agent, but because this action was
ultimately worse for the red agent, there is some ambiguity
in interpretation. Both participants and model were uncertain
about this trial and erred slightly on the side of helping. There
is a cluster of trials in which the intention model inferred
strongly that the blue agent was helping, but participants were
less confident. This includes trial 5, in which the blue agent
actually did nothing, but one could interpret such inaction as
being relatively more consistent with a helping intention than
a hindering intention. In recent work, Gerstenberg and Stephan
[8] extended the counterfactual simulation model to account
for people’s causal judgments about omissions in physical
events. It would be interesting to investigate similarities and
differences in judgments about inactions in social contexts.
Future work also includes more closely analyzing trials where
the blue agent’s intentions are not well captured by the infer-
ence model, in order to try to better understand participants’
reasoning in those scenarios.

Figure 6 compares participants’ mean causal judgments
with predictions of the counterfactual simulation model and
combined counterfactual intention model. Causal judgments
are better explained by the combined model, especially trials in
which the actual and counterfactual outcomes are different (red
points) but participants nevertheless gave high causal ratings.
This suggests that participants’ judgments about whether the
blue agent caused the red agent to succeed or fail are not only
determined by what would have happened in a counterfactual
scenario without the blue agent, but also influenced by the
perceived intentions of the blue agent towards the red agent.
For instance, in trial 2, the blue agent pushed a box in the
red agent’s way, although there was already a box preventing
the red agent from reaching the goal (see Figure 4). Both
participants and the counterfactual simulation model judged
the red agent to be unlikely to have succeeded counterfactually,
presumably due to the box already blocking the goal, as shown
in Figure 5A. However, both participants and the intention
inference model also perceived the blue agent as strongly
hindering, as shown in Figure 5B. Given that the actual
outcome was negative, these two predictors together drove the
causal judgment up in Figure 6B.

V. CONCLUSION

How do people make causal judgments about other people’s
actions and interactions? In this paper, we developed a compu-
tational model that uses simulations to predict people’s hypo-
thetical and counterfactual judgments about agents’ behaviors
in simple grid environments. The results of Experiment 1
demonstrate that these two types of judgments come apart,
that our simulation model captures the range and uncertainty in
participants’ responses, and that participants’ causal judgments
about the outcome resulting from a single agent’s decision

were best explained by counterfactual judgments about what
would have happened had the agent acted differently. In
Experiment 2, we extended our setting to multiple agents. We
showed that participants’ causal judgments about one agent’s
outcome following a second agent’s helping or hindering are
influenced both by counterfactual judgments about what would
have happened without the second agent, and by evaluations
of the second agent’s intentions.

While Gerstenberg et al. [13] had shown that a counter-
factual simulation model accurately captures people’s causal
judgments about physical events, here we build on this work
by applying it to a novel domain. People not only have an
intuitive understanding of how the physical world works, they
also have an intuitive understanding of how other people
work [4, 9, 18, 23]. Instead of considering what would have
happened if an object had not been present in the scene, we
show that it is also possible to simulate what would have
happened if an agent had not been present, or had acted
differently instead. This work represents initial steps towards
understanding and modeling how people attribute causes to
each other, and in future research we will continue to explore
this in more complex and realistic ways.
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