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Abstract—Recent advances in machine learning have unlocked
new possibilities in human modeling, self-supervision, and lifelong
learning. This work addresses relevant applications of these fields
to navigation amongst pedestrians by using a self-supervised
segmentation neural network to predict motion patterns from
traversability maps. Our proposed model learns to predict
how frequently pedestrians may visit a given region from an
environment’s topology and geometry. We extend graph-theoretic
concepts to crowd simulation in real-world buildings for super-
vision and image segmentation for motion pattern prediction,
resulting in a novel application of existing techniques. We show
that the proposed model and annotation algorithm generalize to
environments not seen during training, can generate reasonable
predictions for environments of any size, and capture intuitive
patterns such as the locations of chokepoints. We also study the
model’s applicability to social navigation and formally define the
problem of predicting the long-horizon motion of pedestrians for
path planning.

I. INTRODUCTION

In robotics, navigation refers to the process by which an
agent computes a feasible and collision-free trajectory to arrive
at a desired location given a state representation and set of
obstacles [15]. Adding other agents or people (i.e., pedes-
trians) to the environment adds considerable complexity and
requires additional computation to account for their motions.
There have been many solutions proposed for so-called social
navigation [17]]. Nonetheless, further work is necessary to
find a solution capable of reliably arriving at a given goal
with minimal social costs (e.g., personal space violations) and
within a reasonable amount of time. Of particular interest to
this work are the additional challenges that arise when deploy-
ing robots in constrained pedestrian environments like the one
seen in Fig. [Th (i.e., houses or apartments). Spatial constraints
such as doorways affect maneuverability and create layout-
dependent patterns of pedestrian interaction that continue to
challenge navigation systems [22]. To this end, we seek to
develop a model that can predict long-horizon motion patterns
in constrained environments. Endowing agents with the ability
to predict where they may encounter others and how they are
likely to move would enable preemptive collision avoidance
and plans that better minimize potential social and path costs.

Recent works on sampling-based motion planning [10], [1]
have used neural networks to learn to characterize motion pat-
terns from local environment features to sample in regions that
are relevant motion planning. By using an approximation of
betweenness centrality [1], a graph-theoretic measure of how
frequently a vertex is visited in shortest paths through a graph,
to compute the labels for a regression or classification model,
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Fig. 1: Merom 0O environment a) map, b) heat map from
hundreds of simulated pedestrian trajectories and c¢) motion
pattern predictions using our approach. As seen, the pre-
dictions capture the narrow passages and frequently visited
regions of the environment.

it has been shown that neural networks can effectively identify
relevant sampling regions (e.g., chokepoints). In contrast, our
method models the prediction as segmentation and computes
a task-agnostic feature representation that better captures the
long-horizon relationship between centrality and topology over
the entirety of the environment.

The contributions of this paper are threefold. First, we define
a self-supervised methodology, dataset, and map annotation
strategy for learning to predict pedestrian motion patterns from
maps of real-world buildings through segmentation. Second,
we formally define the problem of predicting the future motion
of pedestrians to minimize future social costs and provide an
algorithm for estimating future social costs using our model.
Third, we demonstrate that our proposed model and strategy
can be used for motion pattern and social cost prediction in
previously unseen environments.

II. RELATED WORK

Human Trajectory Prediction. Our proposed approach is
distinct from existing human and traffic modeling research in
two fundamental ways. First, our model does not explicitly
predict the future trajectories of pedestrians. Instead, it es-
timates a region’s occupancy probability based on previous
experience. Second, our model only requires a traversability
map as an input and generalizes to topology for which
observations are not yet available (e.g., a house the robot has
not visited before).

In the context of navigation, active collision avoidance
would require additional trajectory prediction for collision



avoidance. Various systems estimate human activity and flow
from stationary sensors like security cameras by tracking
pedestrians and their trajectories (e.g., [6], [35], [L1l,
[30]). However, they are seldom used for navigation and
instead focus on surveillance and monitoring. In general, most
trajectory prediction in robotics leverages information about
the recent motion of pedestrians within the sensing range to
predict where each agent will be in the near future [28]]. Most
relevant to this work is the relatively small subset of methods
that explicitly account for environment geometry and topology
(e.g., [24], [26], 270, [13D).

The existing approaches for motion pattern prediction do not
scale well for robotics applications due to their assumed access
to a sensor network with good coverage and the known suscep-
tibility to errors when deployed in perspectives or scenes not
seen during training [28]. Unlike such systems, we abstract
out trajectory prediction and active monitoring by assuming
access to a data set of traversability maps annotated with traffic
flow heat maps computed by an arbitrary sensor network or
robot(s). Therefore, we model motion pattern prediction as the
probability of occupancy over a long time frame rather than
future trajectory prediction.

Learning Sampling Distributions. In recent years, there
has been an increased interest in using machine learning to bias
sampling in sampling-based motion planning. This family of
approaches sample configurations in free space and connects
them with traversable edges to construct a graph that reduces
the problem of motion planning to pathfinding. While most
existing machine learning-enhanced methods focus on Ad-Hoc
models for learning sampling distributions or heuristics (e.g.,
(210, (81, (31, (291, 90, [37], [36l], [19]), others propose
a task-agnostic approach for identifying regions critical to
solution paths through regression [10] or classification [I1I].
Unlike in our work, these task-agnostic models produce a
single prediction for a given region and are evaluated solely on
the downstream application improvements and not prediction
accuracy.

[[10] tracks criticality, a measure of how often each vertex
is visited in many one-to-all problems in various roadmaps,
and learns a regression model to predict criticality based on
local topology. This model is then used to construct single-
agent probabilistic roadmaps that identify a subset of the
critical configurations through pre-sampling and connect all
subsequent samples to the critical samples, effectively finding
solutions with fewer samples. [1] computes criticality in
dynamic environments and uses waiting in place as a metric for
determining whether a region is helpful for obstacle avoidance.
With a classification network trained to identify relevant areas
in coarse, randomly generated environments, [1] uses a sliding
window approach to identify critical areas and constructs a
learned skeleton for multi-agent motion planning that includes
configurations that enable collision avoidance.

[10] and [1] provide an intuition for how learning to
predict criticality can improve the scalability of sampling-
based methods with respect to environment complexity, size,
and the number of agents. However, they solely focus on

the sample efficiency and runtime improvements to sampling-
based motion planning. We argue that criticality-annotated
maps are useful representations of how other agents move
more generally. To this end, we focus on novel methods for
annotating traversability maps of real-world apartments and
seek to capture pedestrian motion patterns that span more
significant swaths of the environment.

Image Segmentation. Given that motion patterns span
multiple regions and that the criticality of a region is not
independent of those around it, we formulate the prediction
of motion patterns as a segmentation problem. Image seg-
mentation is a quintessential computer vision problem that
partitions images into clusters of pixels corresponding to
segments or objects. In recent years, deep learning has become
the most common method for segmentation due to its state-of-
the-art performance in various vision tasks [18]. We utilize
fully convolutional deep neural networks (FCNs) [16]], which
consist of only convolutional layers, use skip connections for
resolution robustness, and generate segmentation maps of the
same size as the input. Notably, the loss functions of FCNs
accumulate the error in predictions for all pixels within the
input image, a desirable feature when the class of each pixel
is not independent of those around it. In our implementation,
we use U-Nets [25] a commonly used and simple architecture
that has shown success in multiple domains.

Social Navigation. Safe navigation amongst humans is
essential for deployment in the real-world and has been one
of the most studied problems in robotics. Early on, solutions
treated motion planning and control as independent submod-
ules and resulted in the robot "freezing" in scenarios where
the planner could not find feasible solutions given the assumed
pedestrian trajectories ( [32]], [31]]). These and more modern
solutions generally rely on predicted pedestrian trajectories
or positions as inputs and may lead to planning based on
incorrect assumptions or predictions. Recent approaches that
leverage imitation and reinforcement learning instead couple
prediction and planning to compute policies that match human
navigation patterns (e.g., [20], [2l], [23]) or maximize an
expected reward (e.g., [, [4], [22]]) respectively. While
these approaches provide a framework for learning rather than
encoding all of the complexities of social navigation, they
are limited to the regions of the state space covered during
training. Consequently, learning-based approaches lack safety
guarantees and do not provide a scalable and flexible life-
long learning framework. In this work, we study how machine
learning can extract relevant features for learning and non-
learning techniques based on experience. By accumulating
data throughout a robot’s lifetime, we believe that models like
the one proposed in this paper can learn patterns that can
more easily enable preemptive collision avoidance, life-long
learning, and context-dependent behaviors (e.g., account for
the time of day).

III. PROBLEM STATEMENT

In order to best express and understand the most formal
application of our model to social navigation, we use a general



formulation for social navigation from [17]. We extend the
formulation and instead express the optimization in terms
of the expected cost given an initial trajectory. Let 2 be
a given planar configuration space for the robot of interest.
Given some configuration ¢ € 2, we denote by Ag(c) the
area the robot takes at that position in workspace. At some
time # > 0, the agent has to navigate amongst a set of 71, > 1
pedestrians. Given some configuration ¢ € 2 for pedestrian
J € [fp], we denote by Aj(c) the volume it takes at that
position in workspace. The agent and pedestrians intend to
reach their destinations gg and (g;) jeli,) respectively while
avoiding collisions with the a set of static obstacles %, and
abiding to social norms (e.g., respecting the personal space
of others). Let 7 = {71:[0,1] = 2| 7(0) = gg,7(1) = g}
be the set of all possible trajectories over the configuration
space (parameterized as a curve) that start at point gg € Q and
finished at the goal point g € 2. At planning time, the agent
generates an initial intended trajectory, or global plan, 75, € 7
by solving the following optimization problem:

T g le(Tr) + A (7p, T)] (D)
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where ¢(Tini,&) is a simulation of potential navigation
episodes given the initial trajectory Tip; and the environmen-
tal context & (e.g., environment geometry/topology, time of
day, semantics, etc.). This simulation is stochastic due to
the stochastic nature of the pedestrian trajectories. Since the
initial trajectory may require additional replanning due to the
presence of an arbitrary number of pedestrians with stochastic
trajectories, the simulation must compute multiple final tra-
jectories 7, € .7 and pedestrian trajectories 7 = (T1s- 5 Tny )
where 7;:[0,1] = 2, i € [1,).

Since there are quasi-infinite potential scenarios, the agent
must consider a large number of potential scenarios when
choosing its initial path 7j,;. In order to quantify the cost
of its trajectory the agent must consider ¢ : .7 — R, a cost
corresponding to the nature of the path (e.g., how long it
took the robot to traverse it) and ¢* : "% R, a A-
weighted cost that captures social considerations and takes
into account predictions about the future behavior of others
T = (T1,---,7,). In general, the robot does not have access
to the navigation costs of the pedestrians, which includes ¢;,
Ej», trajectory 7;, or weight A of the pedestrians, though each is
computing a similar optimization independently. In this work,
we refer to this type of navigation as social navigation.

The objective above captures the most general form of
social navigation. However, it is intractable because the social
costs are not strictly defined. Therefore, we focus on the
cost of proximity. We model the social cost as the average
of the distances to the pedestrians that are within a distance
threshold & through a zero mean Gaussian density, a common
formulation for social costs ( [14]]). In other words, the social

costs are exponentially larger the closer the pedestrian is to the
robot. We sum over the Gaussian density from the beginning
to the end of the discretized final trajectories sampled. Let O
be a discretization of the configuration space. Then, we can
define the discrete set ZBs(p) :={x€ 2| |x—p| <8}InQO.
We also define .7 the set of trajectories taking values in O
that start in ¢, € Q and finish in g € Q and % € 7, the set of
elements in O that are occupied by the trajectory 7. Finally, we
discretize the time and assume the robot agent and pedestrians
move in a total time interval of N+ 1 steps, from time step 0
to N.
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Rather than simulate the set of trajectories .7 given & we
propose to model the probability of finding a pedestrian at any
location x € Q (independent of time) with a model /g (x). As
discussed in Sec. [l this is the focus of our work. Our goal is
to estimate an appropriate sy or similar representation that can
be used to estimate the social costs relative to other options.
Given such a model, we propose to estimate the social costs
with the following expression:

it
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IV. METHODOLOGY
A. Data Generation

The goal of our model is to learn to predict which regions
of the map are most frequently visited by pedestrians from
experience. We generate our training data by tracking the
criticality of single and multiple agents over multiple episodes.
Our multi-agent simulation uses reciprocal collision avoidance
(ORCA) [33], a commonly used crowd simulation algo-
rithm for social navigation simulations, to simulate trajectories
in realistic reconstructions of apartments from the iGibson
dataset [34]. We generate relevant ground-truth annotations
by simulating multiple episodes and tracking the area swept
by the pedestrians during execution. Once the visit counts
per pixel are collected, we normalize and bin them into
three classes, effectively constructing a segmentation mask
where each class corresponds to the "level" of criticality of
the region based on the uniform quantization. While three is
an arbitrary hyper-parameter, we chose it since we observed
that there are roughly three clusters in the motion patterns:
chokepoints/narrow passages, regions frequently visited by
pedestrians given their proximity to chokepoints and narrow
passages, and open spaces. We use this intuition for the
qualitative analysis of our results and propose it as a guideline
for human-generated labels in the future. Fig. [I[b shows the
segmentation labels for one of the training environments
(brighter colors depict more visited regions). This procedure



is computed in eight environments, five of which are used for
training (shown in Appendix [A) and three for evaluation.
The dataset Y consists of segmentation mask labels y
and unannotated occupancy grids x. Where y;',?C € [0,1] for
every pixel p in the i-th grid depending on whether it is
labeled as class ¢ or not. There are two special classes, 0
and —1 for pixels in %,y and unlabeled free space (€frec),
respectively. These classes are necessary for calculating the
loss and weights. The input features x are occupancy grids
of size (nxn), where x}, € [0,1] for every pixel p in the i-th
grid depending on whether the location is an obstacle or free
space. We extract grids with overlaps from the environments,
and rotate/mirror them to create eight unique transformations
of each example and discard examples with few labeled pixels.
Further details on the dataset can be found in Appendix [A]

B. Segmentation U-Net

We use a U-Net [25] based implementation, an FCN
that downsamples, upsamples, and skips connections to learn
features at various resolutions. Using Y, we train hg. Which
outputs y € R"*" a matrix consisting of the criticality predic-
tions for each pixel. During training, we minimize pixel-wise
cross-entropy loss and optimize with Adam [12]]. Namely, we
minimize:

C

f(e) = - Z Z Wc(l()g)?p.c)yp,c “4)

peEyc=1

Where p is the pixel position in y and w. is a weight that
depends on the class. Since the training data is imbalanced,
we use the inverse of the frequency of each class as its
weight. We also have many unlabeled pixels, so we assume
that the unlabeled pixels follow the same class distribution
as the labeled critical pixels and add them to the labeled
class counts to compute the weights. Without increasing the
counts of critical pixels, the weights would practically ignore
the obstacle class due to the considerably larger number of
obstacle pixels relative to labeled free-space pixels.

During training, we set the weight of unlabeled pixels
in Cfree to 0. Therefore, the optimization does not include
unlabeled free space in the loss and prevents the network from
predicting pixels without a criticality value. More details on
the network can be found in Appendix [E] We found that the
network benefits from predicting pixels in %,, effectively
learning to predict where obstacles are despite the obstacles
being perfectly specified in the input. Notably, the model
sometimes predicts obstacles in %, due to it not being
penalized for doing so over unlabeled €F... We assign an
additional criticality level to those predictions to avoid creating
misspecified traversability maps. The nature of the problem
raises interesting research questions outside of the scope of
this work. In the future, we plan to further explore model
prediction over topology, where one may not want to predict
Gobst DOT treat Cppy and unlabeled %pqce in the same way in
the loss function.

Algorithm 1 Map Annotation

Input: Map X of dimensions r X ¢, hg with input (n X n)
Output: Map annotated with hg
: output <— 0
: for Every (n xn) segment around x € X do
output, < output, +hg(x)
end for
: if EVALUATION then
output +— quantize(output)
else
output < normalize(output)
: end if
: output < outputoX
: return output
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C. Map annotation

After training hg, we use a sliding window approach to
compute multiple predictions per pixel and avoid artifacts from
predictions with insufficient topological context. Alg. [T| breaks
down our proposed map annotation strategy. First, The map
is iterated over with a stride of one and the model is applied
to every possible n X n occupancy grid that contains a non-
obstacle pixel (padding if necessary) (line 2). The predictions
are accumulated in an array (line 3). For evaluation, the sum
of predictions is then quantized such that the distribution of
predictions matches a given distribution (line 6). The quantiza-
tion subroutine finds the binning thresholds (i.e., percentiles)
for each class and assigns the class label for each pixel
accordingly. If a discrete output is not necessary or desired, the
output is simply normalized (line 8). Finally, the predictions
are multiplied element-wise with the input traversability map
so that the annotated map contains the same obstacle geometry
as the input (line 10). Additional discussion on our map
annotation methodology is included in Appendix

V. EXPERIMENTAL RESULTS

We use three testing environments for evaluation. As with
the training data, the ground-truth labels for segmentation
evaluation are noisy and imbalanced due to the randomly
sampled starts and goals of the trajectories, the limited number
of simulated trajectories used to generate the training data,
and the sparse nature of criticality. While other metrics like
betweenness centrality may be deterministic, we argue that
this approach is more applicable to predicting the movement
of agents controlled by an unknown policy or from real-
world data. We opted against hand labeling the environments
according to the guidelines described in Sec. to prevent
introducing any bias. For social cost prediction evaluation, we
use the normalized annotations.

A. Segmentation Evaluation

Test Environments. Fig. 2| summarizes the results of our
approach’s segmentation predictions. The confusion matrices
in Fig. 2k are scaled by the weights proposed in Sec. [[V-B]and
show that our predictions are generally correct with respect
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Fig. 2: Ground-truth, predictions, and confusion matrices for Wainscott 1, Beechwood 1, and Thlen 1 environments

to the simulated data. Class value 1 corresponds to least
frequently visited regions (darkest), while 2 and 3 correspond
to frequently visited regions and the most frequently visited
regions respectively. For Wainscott 1 and Ihlen 1, two of
the predicted criticality values are mostly predicted correctly,
while only one is mostly predicted correctly for Beechwood 1.
Notably, whenever a prediction is wrong, it is almost always
predicted as an adjacent criticality value. In other words, the
model only slightly over or underestimates the criticality of a
region. This is expected because of the noise in the ground-
truth and reflects the continous nature of motion patterns.
Qualitatively, the predictions in Fig. |2| capture the desired
narrow passages and patterns. Overall, the correlation between
the class labels and the predictions and our intuition of the
desired output yield acceptable results.

Unlabeled Regions. There are additional opportunities to
assess the performance of the network qualitatively. In over
half of the training and testing environments, parts of the maps
are not labeled in the simulated data. As seen in Figs. 2h-c,
our model predicts the expected patterns and generalizes to
unlabeled regions. This finding further motivates the use of
machine learning for motion pattern prediction. While using

the simulated training data or a non-learning-based method
for pattern prediction may be more straightforward, the agent
may not be able to accurately generalize the patterns to other
rooms within the same environment.

B. Social Cost Prediction Evaluation

Lastly, we evaluate whether the output of our approach is a
good estimator of social costs as described in our motivation
(Sec. [I). The goal is to approximate the social costs of
a discrete trajectory by treating hg(x) as the probability of
occupancy by a pedestrian in the annotated environments (See
Appendix [F). We simulate navigation episodes with more than
four pedestrians each in the test environments and compute
the ground-truth and predicted social costs of one trajectory
per navigation episode. To depict the comparison between the
predicted costs and ground-truth, we sort the episodes based
on both the predictions and simulated data and measure how
well the model predicted the social costs relative to other
episodes by computing the offset between the ground-truth
and predicted ranks.

In the experiments depicted in Fig. 3] we set the standard
deviation ¢ to 1 meter and distance threshold é to 2 meters.
We use around 70 episodes per environment and paths of
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Fig. 3: Boxplots of sorting offsets when comparing the ground-
truth rank and predicted rank of social costs of n navigation
episodes.

equal length. The sorting offsets have high variance but are
better than random and predict over half of the episodes within
25% of the right rank. These results are expected since our
estimate always assumes that there is a non-zero probability
of occupancy (as judged by the environment’s topology).
Therefore, the approximation inherently provides an incorrect
estimate when no pedestrians are present. Generally, this stems
from the stochastic nature of pedestrian trajectories and our
predicted social cost is a conservative approximation when the
robot does not encounter pedestrians during execution time.
Overall, it is difficult to assess whether a model is a
reasonable estimate for social costs due to the stochasticity
of the problem. Despite this, the most crucial aspect of such
a model is its ability to estimate the social costs relative to
other potential trajectories. In practice, robots can use incorrect
estimates if the best trajectory has a lower estimate than
the rest. As mentioned in Sec. [l and is done in relevant
related work, we intend to further evaluate the model by
measuring its benefits to downstream applications in future
work. Moreover, we note that, in practice, the robot would
update its estimates as observations become available and
that a robot could reasonably behave more cautiously than
necessary in various situations when predicting social cost.

VI. LIMITATIONS

While there are various open research questions and some
arbitrary design choices in our work, most stem from the
stochastic nature of the problem and novelty of our approach.
Ideally, our evaluation would use agreed-upon ground-truths
and metrics for social navigation, but the nature of the problem
leads to the need to propose new evaluation techniques.
Moreover, our work is most useful for a subset of the po-
tential scenarios, where there are various pedestrians in the
environment or the agents must share relatively small regions
of the environment. While these scenarios are not infrequent
in the real-world, the usefulness of our approach is therefore
most easily measured when it is used to improve planning.

A more intrinsic limitation of this instance of our model

stems from the simulated data. Though the approach should
be robust to sim-to-real given that the model does not rely
on physics simulation or simulated high-dimensional sensor
inputs (e.g., lidar scans), the motion patterns the model learns
are those of ORCA controlled pedestrians and not real humans.
A real-world dataset would capture more nuanced semantic in-
formation and likely be more useful for deployment. However,
compiling a dataset as thorough as ours without a simulator
would require substantial work. We assume access to generally
unknown information that would likely have to be collected
from cameras and other sensors without coverage of the entire
environment. Currently, no such real-world dataset exists, but
the need for such data and better simulators would help ground
the validation of this work.

VII. CONCLUSION

In this paper, we proposed a novel methodology for learning
to predict motion patterns from traversability maps through
self-supervision, discussed the implications of motion pattern
predictions in social navigation, and demonstrated that our
approach generalizes to new environments. Most importantly,
our work sheds light on the need for predicting long horizon
pedestrian motion for preemptive collision avoidance and
social cost reduction. We also discuss various directions for
future work and address the limitations of our proposed model.
In the future, we plan to deploy the proposed model to improve
social navigation solutions and further validate the usefulness
of predicting the probability of occupancy from topology.
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APPENDIX

A. Details

We calculate the following distribution of labels in our
simulated training data (higher class values correspond to more
frequently visited regions):

] Class Distribution \

Class 1 2 3
Percentage 82.5% 14% 3.5%

We use the inverse of the frequency of each class as its
weight. Below are the weight values calculated from the
distribution of the training data:

Class Weights

Class -1 0 1 2 3
Weight 0 0.006 0.033 0.194 0.767

B. Discrete Training Environments

(b) Pomaria 0

(d) Benevolence 0

(e) Ihlen O

Fig. 4: Segmentation masks used as training data.



C. Criticality Predictions for Training Environments

(a) Merom 0

(b) Pomaria 0

(d) Benevolence 0

(e) Ihlen O

Fig. 5: Criticality predictions of training environments.

D. Map Annotation Ablation

a) Proposed Strategy b) Large Stride  c) Per Pixel

Fig. 6: Thlen O environment annotated with a) the proposed
annotation strategy b) the strategy with a large stride/no
overlaps, and c) a classification, prediction per pixel, strategy

Fig. [6h depicts the output of our strategy. Fig. [6b shows
an output with large stride and no overlap that contains
artifacts that stem from not averaging over predictions from
multiple windows. There are noticeable differences around the
boundary of the sliding window. This is because the window
lacks the topological context that is beyond its boundary. On
the other hand, Fig. [6k shows the output when the model
only makes a single prediction per pixel during the sliding
window annotation, practically approaching the annotation as
classification rather than segmentation.

E. U-Net Details

The details of our model are as follows:

« Input: 64% pixel local image (6.4> meters)

« Architecture: 32% x 32 conv - max pooling - 64> x 3% conv
- max pooling - 1282 x 32 conv - max pooling - 1282 x 32
conv - upsampling - 642 x 3% conv - upsampling - 32% x 32
- (with residuals across all resolutions)

o Data: 5 environments, 37240 samples

o Learning rate: 0.01

o Number of epochs: 30

F. Criticality Predictions for Test Environments

a) Wainscott 1 b) Beechwood 1 ¢) Thlen 1

Fig. 7: Test environments annotated with criticality predic-
tions.
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