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Abstract— In this work, we introduce Cogment - an open-
source framework that introduces an actor formalism to
support a variety of humans / agents collaboration topolo-
gies and training approaches through an easily scalable dis-
tributed micro service architecture. Leveraging these human-
agent collaboration typologies, we further demonstrate how
social-intelligence based benchmarks can be developed using
Cogment.

I. INTRODUCTION

In order to understand the complex behaviors of humans,
their mental states, and to develop AI agents able to engage
in rich and complex interactions with humans, we argue that
any number of human and AI agents should be perceived
at the same level. In a typical reinforcement learning setup,
an AI agent acts in the environment, receives feedback in
the form of rewards from the environment and improves
itself based on these rewards. In Figure-2, we describe
several different ways (blue arrows) in which humans can
interact with agents Humans can act in the environment on
par with agents (e.g, man vs machine multi-player games),
provide rewards to the agents, demonstrate tasks to them, or
generate tasks for agents to achieve, and Cogment provides
a unifying framework to fulfill all these human-in-the-loop
cases. These capabilities of Cogment make it a desired
framework to develop social intelligence benchmarks that
are largely dependent on the human-AI collaborations.

Recently, there has been significant progress in the per-
formance achieved by AI agents in cooperative multi-agent
games. A prominent one among those is the game of Hanabi,
which is a very challenging partial-information cooperative
multi-agent game. In [1], the authors formulated the quan-
tified notion of social intelligence as a life-long learning
benchmark task in the context of reinforcement learning.
The setup consisted of three phases. In phase-1, a pool
of agents are trained through self-play. In phase-2, one of
the agents is taken from this pool and trained sequentially
with other partners (also sampled from the same pool) and
periodically evaluated against all other agents. In phase-3,
each of these agents is evaluated against a new set of agents
that weren’t used during the training process. While only AI
agents were used, trained and played in the author’s work,
Cogment provides the means to go one step further with AI
agents playing against humans. The use of these additional
training samples allows agents to develop more socially
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Fig. 1. Cogment orchestrates the running of trials involving AI and Human
actors in simulated or "real-world" environments. Each trial involves one
or multiple actors and runs in one environment. Multiple trials can run
concurrently, and they can share actors or environments.

intelligent behaviours. The role of Hanabi in developing
socially intelligent behaviour was also highlighted in several
previous works including: [2], [3], [4], [5], [1], [6]. While
all this current research has been focused on the centralized
training of agents, with Cogment multiple agents can be
deployed and train in a distributed and decentralized manner,
thus increasing computational efficiency and enabling faster
progress in multi-agent reinforcement learning and social
intelligence research.

In Section-II, we describe the Cogment framework, and in
Section-III, we describe several use-cases and applications
of Cogment involving human-in-the-loop learning. We then
introduce a novel multi-agent reinforcement learning envi-
ronment, "Death Match", and use it to develop another social
intelligence benchmark task by formulating it in a life-long
learning setup, similar to the setup used in [1].

II. KEY FEATURES

A. Multi-actor framework

Cogment provides a multi-actor framework where multiple
heterogeneous actors interact with an environment during



trials. In Cogment, actors can be either humans or AI agents
of any kind: learned or learning or heuristic or random, using
machine learning models or not. Cogment thus enables AI
agents and humans to interact and train together in shared
environments, in any configuration; an actor can interact in
one or several trials (see Figure 1).

One key capability of Cogment which supports a wide
range of use cases is the training of AI agents based on
different types of inputs from the humans present in the same
environment. Compared to machines, humans have a limited
work capacity and can’t operate at the same speeds: this
makes their presence scarce in such environments, in terms of
data contribution. It is therefore desirable to leverage all the
possible inputs that can be generated by them. This includes
evaluative feedback, i.e. humans evaluating the performance
of AIs at a given task, and demonstrations i.e. humans
performing a task for the benefit of an AI [7]. Cogment
supports both these types (among others) of human-in-the-
loop training. When it comes to evaluative feedback, it
can be desirable to mix several sources of such evaluation:
multiple humans evaluating the same actions of an AI or
mixing the subjective feedback of a human with an objective
performance measurement. That’s why Cogment supports
rewards from multiple sources and aggregates them.

Another aspect of human-provided evaluative feedback
is an inherent lag between a feedback-calling action, its
perception by the human, and its subsequent evaluation. To
facilitate that, Cogment supports retroactive rewards while
maintaining online learning capabilities.

One foundational aspect of Cogment is the definition of
contracts for the interactions between the actors and the
environment, in the form of an action space and an obser-
vation space. These definitions makes it easy to decouple
the development process of each actor and environment
implementation and also enables a very interesting feature:
implementation swapping.

While observation and action space define the interface
and the way actors and environment can interact together,
their implementation defines how they behave in accordance
with this interface. Several implementations can share the
same interface, and if they do, they can be swapped. This
opens the door to several training and operating topologies
that are especially relevant when involving humans.

Let’s say we are training two AI agents in an environment
with two humans. The problem with starting the training
with this setup is that humans will interact with very dumb
AI agents for a while before these start to do something
useful, which is not an efficient use of Humans. Cogment’s
implementation swapping allows more interesting curriculum
setups to work around this issue by pre-training with other
heuristic or rule-based agents.

While the discussion so far has been focused on making
the most out of human resources via efficient human-in-
the-loop training setups especially for social intelligence,
these capabilities can also be extended to situations where
there’s only different AI agents interacting with each other.
Implementation swapping can be used to create complex

training and evaluation scenarios. For example, training
several AI agents in self play trials, before moving to mixing
and matching AIs in another set of trials.

Cogment has been designed to address these issues for
its users. From the get go, Cogment applications are
distributed, every part being implemented as a micro service
communicating with the others using a technology-agnostic
protocol. With Cogment, a developer, a researcher or a
data scientist is able to start working on their personal
computer and, ultimately, have their work being deployed
on a high performance cluster to support a larger load with
no integration discontinuity [8]. In the same fashion, a
Cogment application might begin with integrating a simula-
tion before moving to its real-world counterpart, in order to
facilitate the sim-to-real process and to continuously operate
and train the AIs. Cogment decouples the hosting and
distribution concerns from the AI design, implementation
and evaluation.

III. APPLICATIONS

A. Reinforcement Learning

Reinforcement learning has already seen lot of success in
board games ( [9], [10], [11]) and video games ( [12], [13],
[14]). More recently, RL is being used in real world appli-
cations like manipulation tasks ( [15]), active localization (
[16], [17]), autonomous navigation of stratospheric balloons
( [18]), de novo drug design ( [19], [20]), autonomous
driving ( [21]) and many others. For computationally efficient
training of these RL algorithms, one needs to be able to
launch multiple trials simultaneously and gather diverse
experiences from the environment. Cogment supports this. It
can launch multiple trials, synchronously or asynchronously,
using multiple agents or multiple instances of the same agent.
For sample efficient learning of algorithms, one has to learn
from the old samples - Cogment supports this as well by
storing all the relevant information in log files in addition to
the standard usage of a replay buffer.

In some cases, an agent performs better if it takes input
from, or is bootstrapped by another agent. For example, in
expert-iteration [10] based approaches like [11], a policy
that imitates the MCTS agent is learnt. The MCTS agent
in turn initializes its prior probabilities based on the policy
network’s output. More generally, RL can be combined with
other learning or non-learning based algorithms. For exam-
ple, genetic algorithms [22], [23] or heuristic search [24].
Cogment provides an efficient way to run such algorithms
via the use of actor implementations. In offline RL, the
behaviour policy that is used to collect experience could be
completely different from the agent that is currently training
based on these experiences [25], [26], [27]. Cogment handles
this through its efficient use of its activity logger.

B. Human-in-the-loop Learning

Humans can interact with learning agents in multiple
ways. Humans can act in the environment on par with agents
(e.g, man vs machine multi-player games), provide rewards
to the agents, demonstrate tasks to them, or generate tasks



Fig. 2. An illustration of different ways in which humans can be involved
in the training process of an AI agent. Humans can act in the environment,
provide rewards to the agents, demonstrate tasks or generate tasks for the
agents to achieve.

for agents to achieve, and Cogment provides a unifying
framework to fulfill all these human-in-the-loop cases. For
example, having humans acting in the environment is a way
to ensure agents will take safe exploratory actions in sensitive
contexts like autonomous driving [28], [29]. Humans can
provide rewards for several learning algorithms, for example
in the context of evaluating machine-generated dialogs [30],
[31], [32], summaries [33], [34], semantic parsers [35],
natural language [36], machine translation [37] and many
others. In some cases, it is challenging to design a reward
function or, the reward function could be sparse, thus making
it hard for an RL agent to learn. In such cases, agents
can learn from human demonstrations under the imitation
learning (IL) paradigm [38], [39], [40]. If it’s expensive to
use human demonstrations, humans can be used to generate
curriculum i.e, generate tasks with an increasing level of
difficulty so that the AI agent can learn faster [41], [42],
[43]. On the other hand, if no human input is possible, a
different AI agent can be used to generate the curriculum
[44], [45].

IV. RELATED WORK

[46] is one of the first RL code bases in pytorch that
implemented several algorithms like A2C, PPO, ACKTR,
GAIL on a wide range of OpenAI gym environments and
was successful in replicating the results of these algorithms.
Concurrently, [47] introduced rllib (that was built on top
of a distributed machine learning framework Ray [48]) that
provides a lot of in-built algorithms for direct use. rlpyt [49]
is another RL library that provides modular and optimized
implementations of several deep RL algorithms in pytorch
and is useful for small to medium scale research. Garage
[50] also provides similar utilities and is often used for
benchmarking different algorithms. ACME [51] (that uses
reverb [52]) is a recent framework and is commonly used
for quick prototyping. Platforms like [53], [54], [55] enable
interaction of agents in real-world environments. While most
of these frameworks are suitable for RL research, they do not

explicitly account for how humans can actively participate in
the learning process and thus are not suitable for prototyping
socially intelligent behaviors.

V. DEATH MATCH

Death match was developed as a testbed and showcase
for Multi Agent Reinforcement Learning (MARL), life long
learning and social intelligence using Cogment. The game
is a competitive and cooperative paintball-like shooter game,
where teams of agents compete against each other in an arena
for a trophy. Agents shoot paint balls at their opponents from
other teams. An agent is eliminated if it is hit by an opponent;
there is no friendly fire. Last team standing wins the game;
each Cogment’s trial consists of a game.

Death match includes a lightweight web based front-end
where users can configure and watch a trial. Figure 3 is
a screenshot of this Web Client featuring a duel between
two agents trained using self-play. The larger circles are the
players, the smaller circles are the paint balls, and the lines
represent the region of visibility for each player. Since the
velocity of the paint balls is low, the physics of the simulation
makes their trajectory nonlinear with the movements of the
players.

Fig. 3. Screenshot of the Death Match Web Client. The left pane of
the window shows the trial in progress, while the right pane displays the
configurations of the trial such as the number of teams in the trial, number
of players in each team, shot frequency, shot velocity, arena size etc.

Death match also allows to run in a "headless" mode, i.e.
without any visualization, to gather data and train multiple
agents over campaigns of multiple trials executed in parallel
and at scale.

A. Modeling

Similar to [1], our social-intelligence benchmarking task
on Death Match involves three phases. In the first phase,
different agents (varying algorithms, architectures and seeds)
were trained using self-play. Their performance in this phase
was judged based solely on the rewards achieved at the end
of their training. In phase-2, agents were sampled from this
trained pool of agents and paired against each other. The
agents are expected to develop social intelligence behaviours
in this phase. They are scored based on several different



metrics including total survival time of each of the agents,
number of paint balls fired by each agent, collaborating with
other agents to fight against a common enemy etc.. However,
this is only a training phase, and hence the behaviours can
be biased towards playing against other agents present only
in this pool. To avoid this, we introduce phase-3 where in,
each agent is made to play against agents that it hasn’t
played before. This could include humans as well. Death
Match is a simpler game than Hanabi (as the rewards are
more dense and the action space is fixed) and hence the
focus would be on developing algorithms than could master
social intelligence behaviours rather than on multi-agent
reinforcement algorithms for training agents using self-play.

B. Implementation

Fig. 4. Death Match instantiates Cogment architecture implementing a
command line interface (CLI) client including a trial campaign launcher,
a web client including a trial launcher as well as an observer actor, and
finally a number of services, the arena environment, a trial configurator and
a number of Actors. All of the Death Match specific modules are depicted in
orange and are implemented using Cogment SDKs, Cogment out-of-the-box
modules are depicted in blue.

Death Match architecture is depicted in Figure 4. Several
modules were developed specifically for Death Match using
the Cogment SDKs.

• The arena is the environment service, it implements
the logic for the Death match game: terrain, physics
simulation, players elimination etc..

• The web client, shown in Figure 3, allows to configure
trial parameters through a controller and and visualize
the trial in progress thanks to a global observer actor.

• The command line interface (CLI) client triggers
a number of parallel trials continuously for training
purposes.

• Several player agents are implemented as actor ser-
vices. Several RL algorithms are available, some able to

leverage the continuous nature of the action space, such
as MADDPG [56], others needing to discretize such as
PG [57], [58] or DQN [59]. Other non-learning agents
were implemented using scripted heuristic behaviors,
which can be used during training or as an evaluation
baseline.

• Finally the configurator is a pre trial hook used for
service discovery and load balancing. Upon startup,
actor services register with the configurator. When a
trial starts, the configurator can then enrich the trial’s
configuration with a random network endpoint of the
desired actor implementation to enable the orchestrator
to reach them and spreading the load between several
services.

To understand how all the pieces work together, let’s look
at how a trial plays out. First, one of the controllers defines a
basic trial configuration, this includes the number of teams,
which player agent should be part of each team as well as
configuration parameters for the arena such as the speed of
the paint balls. When the trial is started by the web client’s
controller, it specifies that the global observer actor should
be part of the trial too. Once the configuration is complete
the start of the trial is requested to the orchestrator.

As soon as the orchestrator receives the trial start requests
it calls the configurator pre trial hook which extend the
trial configuration with the network endpoints of the actor
implementations involved in the trial. If the global observer
client actor is involved the orchestrator wait for it to join and
the proper trial can start.

Every trial begins with the arena environment sending
initial observations to every actor in the trial through the
orchestrator. After receiving observations from the environ-
ment, the actor implementation chooses an action according
to their respective model (e.g, a neural network). Actions
are then sent to the environment through the orchestrator.
Once received, it updates its internal state accordingly (e.g. it
moves players that decided on a movement, eliminate players
hit by a paint ball), it then computes the reward for each
player and then sends new observations and rewards to their
respective actors. At the end of each trial, the orchestrator
dumps tuples of observations, actions, and rewards of every
actor to the activity logger, which the actors sample randomly
from to update their respective deep learning models and
learn from their experiences so far. The total rewards the
actors receive across trials can be monitored through the
metrics module’s dashboard, the actors’ models are con-
sidered trained if the moving average of the total rewards
they accumulated across ten consecutive trials is more than
a predefined threshold.

C. Results

While the different agents trained using self-play using
different algorithms ( [56], [57], [58], [59]) with different
seeds achieved a local maximum behaviour, they performed
abysmally when paired against each other. When there are
more than two teams involved, they failed to implicitly
cooperate with other teams to defeat a common enemy. This



demonstrated the need to train agents in a socially intelligent
way by letting the agents play against each other where they
learn to act based on other agent’s behaviour and intents.
Further in phase-3, we test these socially intelligent agents
by making them play against new agents (learned, random
and humans) that were not used in phase-2.
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