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Abstract— Coordinated hunting is widely observed in ani-
mals, and sharing rewards is often considered a major in-
centive for this success. While most results on this topic are
correlational, we reveal the causal roles of sharing rewards
through computational modeling with a state-of-the-art Multi-
agent Reinforcement Learning (MARL) algorithm. Using a
coordinated hunting task with a group of predators hunting
one prey, we show that sharing rewards is neither necessary
nor sufficient for modeling animal coordinated hunting. Hunting
coordination modeled through sharing rewards 1) suffers from
the free-rider problem, 2) plateaus at a small group size, and
3) is not a Nash equilibrium. Moreover, individually rewarded
predators outperform predators that share rewards, especially
when the hunting is difficult, the group size is large, and
the action cost is high. We conclude that animal coordinated
hunting can be successfully modeled through reinforcement
learning only when the agents are selfish, and not when the
rewards are shared. 1.Our results further offer computational
support to the explanation of chimpanzee behavior that agents
with only selfish interests can form coordinated hunting, and
sharing rewards might simply be a byproduct of hunting,
instead of an intelligent design to facilitate coordination [1].

I. INTRODUCTION

Coordinated hunting has been broadly observed in
the animal kingdom for many different species such as
wolves [2], hyenas [3], dolphins [4], ravens [5], and
hawks [6], whereas the majority of in-depth discussion on
coordination mechanisms focuses on chimpanzee behavior.
Chimpanzees hunt for meat in all known populations, with
the red colobus monkeys being the primary prey where
both species exist [7]. Anthropological studies based on
field observations suggest that chimpanzees exhibit sophisti-
cated human-like cooperation, such as playing complemen-
tary roles during hunting, which includes drivers, blockers,
chasers, and ambushers [8]. Consequently, understanding the
motivation of such coordinated behavior provides insights on
the evolutionary history of human cooperation.

Sharing rewards has been considered as a major incen-
tive for animals’ success in coordinated hunting, especially
for chimpanzees. It seems to encourage participation in
group hunting, which leads to higher hunting success [9].
Moreover, evidence has shown that sharing rewards further
contributes to chimpanzee bonding through reciprocity [10],
[11], reducing begging harassment [12], [13], exchanging
meat for sex [11], and securing dominance [11].
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However, since existing animal studies are mostly ob-
servational, they can only indicate a correlation, while the
causal effects of sharing rewards on coordination remain
unclear due to the lack of causal evidence from formal
experimental manipulations. In fact, it has been argued that
sharing rewards is neither necessary nor sufficient for coor-
dinating animal group behavior. It could be unnecessary,
since chimpanzee coordinated hunting may not be based
on any type of sharedness at all, but is mainly driven by
selfish interests [1]. In such a case, during hunting, each
individual chimpanzee simply takes actions to maximize
its self-interest based on other agents’ locations. Sharing
rewards could be insufficient to support coordinated be-
havior. One critical challenge for coordination is the free-
rider problem [14]: Rational individuals have little incentive
to contribute to the production of a common good, given
the costs they would incur, since they will benefit from
the shared good whether or not they contribute. However,
the free-rider problem has not been highlighted in existing
observational studies of animal hunting. Theories of human
cooperation suggest that other cognitive infrastructures are
necessary to solve this issue, including cheater detection
and punishment [15], commitment [16], fairness [17], and
accountability [18]. Evoking these complex normative and
moral concepts requires a stronger definition of cooperation
beyond sharing rewards [19].

With the aforementioned conflicting evidence and view-
points from observational studies, here we study the causal
effects of sharing rewards on the performance of coordinated
hunting from a modeling perspective. There has been a long
history of studies in the ultimate mechanisms of cooper-
ation through an evolutionary perspective, which focuses
on consequences at the population level [20], [21], [22].
Here, we focus on the proximate mechanisms [23], [24] of
individual agents’ decision-making. We use a cognitively re-
alistic artificial intelligence model, Reinforcement Learning
(RL), in which an agent aims to maximize its accumulated,
long-term rewards by learning how to act from trial and
error [25]. RL is a prominent model for animal learning
with deep roots in psychology and neuroscience [26]. RL
is also a state-of-the-art artificial intelligence model, which,
combined with deep neural networks [27], is able to generate
complex intelligent behaviors, reaching human-expert level
performance in games like Atari [28] and Go [29], [30].

More critically, Multi-agent Reinforcement Learning
(MARL), as an extension of RL, has been successfully
applied to challenging group coordination scenarios, such
as autonomous-driving coordination [31], teaming in Dota
2 [32] and StarCraft [33]. MARL offers a generic solution
to different applications simply through adjusting the rela-
tionship between agents’ reward functions. For competition,
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Fig. 1: Illustration of multi-agent deep deterministic
policy gradient (MADDPG) algorithm with three agents.
The MADDPG algorithm incorporates centralized evaluation
and decentralized acting: Each agent i only has access to its
own observations Oi to choose action Ai (policy indicated
in the shaded area). When evaluating its action, each agent
incorporates all other agents’ observations to predict their
actions (represented by dashed circles: Aij denotes agent
i’s prediction of agent j’s action-to-take) and then use the
observations and action predictions to form a centralized
evaluation Qi for its own action. Agents would then update
their policies to output actions that generate improved values.

the reward functions are zero-sum. Critically, MARL defines
cooperation as agents aligning their rewards through the
same reward function [34], effectively splitting the group
reward among all coordinating agents. With the critical
position taken by reward-sharing in MARL, it is theoretically
important to reveal the causal role of reward distribution in
generating coordinated hunting with this model.

One particular algorithm in MARL, multi-agent deep
deterministic policy gradient (MADDPG) [35], has been
successfully applied to a multi-agent hunting game through
agents sharing rewards. It shows that a group of predators can
learn from scratch to coordinate the hunting of an intelligent
prey. The algorithm is decentralized at the top level, with
each agent learning its own model, instead of having a
unified policy copied for all predators (Fig. 1). The training is
cognitively intelligent in two ways. First, it involves cognitive
constraints: when taking actions, each agent can only refer
to its own observation, without accessing observations from
others. Second, each agent treats others as actual agents,
instead of random objects in the environment, and predicts
what they will do next, a process that can be interpreted
as a primitive version of Theory of Mind [36]. Moreover,
an agent’s evaluation of an action is based on all agents’
states and predicted actions, echoing Tomasello’s theory
of coordinated hunting [1]. Agents will then update their
policies to output actions that would improve this evaluation.
The planning remains individualized because agents only
care about their own actions while evaluating the situation
from a holistic perspective.

However, as the focus of the MADDPG study is not in ex-
plaining realistic animal behavior, there are critical artificial
components that make the conclusion not generalizable to
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Fig. 2: An illustration of the coordinated hunting task
with a successful coordination policy. Red circles represent
the predators, and the green circle represents the prey. Two
grey circles represent the obstacles that agents cannot move
through, which are also randomly located and remain station-
ary. a) One frame of agents’ motions during coordination.
Predator 1 in this case chooses to move upwards, potentially
to block the prey’s movement (as a “blocker”), instead of
directly towards the prey (as a “chaser”), a choice that
indicates a sophisticated coordination strategy incorporated
by the agents. b) Value landscape of predator 1’s potential
positions. During the evaluation phase of predator 1, it makes
predictions on others’ actions-to-take (indicated by dashed
arrows). It then uses the predictions, together with other
agents’ observations, to evaluate the value of its own action.
Here, we plot the value of different positions of predator 1
generated from its model. The predator’s policy encourages
itself to move towards the state that induces a greater value.

animal hunting. First, the framework takes sharing rewards
as an assumption and does not provide a comparison with
cases using individual rewards, which fails to provide causal
evidence for the effect of reward distribution. Second, the
predators and prey have no action cost in the environment;
thus, the free-rider problem is avoided altogether, since the
only motivation for free-riding is to avoid individual costs in
cooperation. Third, to achieve better results in training, the
environment rewards predator agents for “bites,” instead of
“kills,” to create frequent reward signals, which helps with
the model training. However, such a setting is unrealistic and
even opposite in real-world hunting, where only kills matter
and can provide substantial material rewards. Bites without
kills may in fact provide a negative reward to the predator, as
it introduces chances of injuries and costs efforts. As such,
it remains nebulous whether the computational model can
indeed handle scenarios with only kill signals.

To test the causal effects of sharing rewards in modeling
animal coordinated hunting, we adopt a coordinated hunting
game setting [35] by populating the environment with mul-
tiple predators and one prey (Fig. 2). Predators are rewarded
only after killing the prey, which happens in 20 percent of
biting instances; a bite occurs when a predator collides with
the prey. After killing the prey, a constant reward will be
allocated to predators based on the reward mechanism in
the specific experimental condition. Predators have individual
action costs proportional to the force they exert. Preys are
trained with the same algorithm with a negative reward at
each bite or kill.
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Fig. 3: Illustrations of the reward distribution. a) Reward
distribution as an exponential function of distance-to-kill.
Percentage of rewards obtained (unnormalized in the figure)
decreases as an agent’s distance-to-kill increases. We chose
seven values of selfish indices to systematically test the
effects of reward distributions. b) An example scenario
showing rewards to be obtained by four agents under two
example selfish indices, s1“ 0, s2“ 2 (red and turquoise
color, respectively). Agents split the reward evenly when
s“ 0, and are sensitive to the distance-to-kill at s“ 2. Agent
i’s reward obtained is represented by rsi under selfish index
s, which is calculated through the agent’s distance-to-kill, di.

II. EXPERIMENTAL DESIGN

We systematically test MADDPG’s performance in coor-
dinated hunting with experimental manipulations inspired by
anthropological and animal studies.

Reward distribution among predators: Anthropo-
logical observations indicate that proximity to prey at the
moment it was killed is an essential factor when chimpanzees
decide how to split the spoil [13]. Here we control the reward
distribution among predators as a function of the distance-
to-kill. Sensitivity to the distance-to-kill illustrates a selfish
index. With a high selfish index, the reward distribution
concentrates on the predators close to the kill. When the
predators are purely selfish (i.e., with an infinite selfish
index), after one predator kills the prey, it will only reward
itself since it is the one closest to the prey. With a low selfish
index, rewards will be broadly dispersed. When the predators
are purely unselfish (i.e., with a zero selfish index), rewards
will be evenly distributed, regardless of agents’ distance-
to-kill. All predators follow the same mechanism in one
condition. Formally, we define the reward distribution as an
exponential function of the distance-to-kill, such that

Ri9pdi`1´kq´s, (1)
where an agent i with di distance-to-kill receives Ri propor-
tion of reward, with selfish index s. The constant k denotes
the minimum distance between two agents; see Fig. 3.

Action cost for testing the free-rider problem:
Agents are motivated to free-ride in coordinated hunting
only to avoid the individual costs [14]. As the action cost
increases, agents would prefer to stay static to reduce indi-
vidual action costs while at the same time obtain allocated
rewards. Accordingly, to test the severity of free-rider prob-
lems as a function of the reward distribution, we define the
action costs to be proportional to the force exerted by agents,
with action cost for agent i, Ci“ a˚Fi, where Fi is the force
exerted by agent i, and a denotes the action cost ratio in the
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Fig. 4: Modeling results visualized as landscapes spanned
by different variables. Brighter color (yellow) denotes
larger values, and darker color (blue) smaller values. a) The
performance of selfish agents increases linearly with the
group size (linear regression, p ă .005, line (B)). Unselfish
agents’ performance remains the same or even drops when
having a larger group (line (A), p = 0.013). Taking the group
size of 6 as an example (line (c)), without loss of generality,
the more selfish the predators, the better their performance
(p ă .001). b) The predators’ performance decreases under
all reward mechanisms, as the speed of prey increases. c)
The performance of all agents decreases as the action cost
increases (p ă .001). d) More selfish agents have their action
force less sensitive to action costs (unselfish agents indicated
by line (A), and selfish agents indicated by line (B)).

specific condition. The action costs are applied to individual
agents no matter which reward mechanism they take.

Group size: Evidence in animal studies has shown
that hunting party size is positively correlated with hunting
success for many different species [37], [9], [2], [6], [38].
Here we test how the reward distribution interacts with group
size by having different numbers of predators in the group.

Hunting risk: Hunting risks have been a significant
factor influencing the hunting behavior of many species.
Wolves display a higher level of participation in riskier
hunting [2]. Chimpanzee hunting has a low success rate and
thus renders hunting an unnecessary activity for some groups,
and some choose to hunt only in a situation of full nutritional
abundance [7]. To evaluate the interaction between reward
distribution and hunting risks, we manipulate hunting risks
by the speed of prey as compared to the predator.

III. RESULTS

Our results indicate that there are significant main effects
for all four variables, and the selfish index is significantly
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Fig. 5: Model performance in equilibrium testing. Selfish
agents are further trained by sharing or individual reward
mechanisms. Performance of pretrained agents significantly
decreased after training with shared rewards (p ă 0.001, df
= 18 for both tests).

intertwined with all three other variables (second-order mul-
tiple regression model, p ă .001 for all terms). In our
further analysis, we investigate two-way interaction terms
by aggregating the other two conditions; see Fig. 4. Our
results indicate that performance (i.e., the number of kills
in one episode) of selfish agents increases linearly with
the group size, while unselfish agents’ performance remains
the same or even drops when having a larger group. The
more selfish the predators, the better their performance.
The change is monotonic, with the most selfish predators
achieving the best performance; see Fig. 4a. The performance
of all agents decreases as the action cost increases, and
increasing action costs hurts unselfish agents more than
selfish agents—unselfish agents fail to obtain any rewards
as the action cost reaches .01 level, whereas selfish agents
still maintain a high level of performance even under the
largest action cost condition; see Fig. 4c. Furthermore, more
selfish agents have their action force less sensitive to action
costs. The most unselfish agents decide almost not to move
at all when there is a small action cost; see Fig. 4d. Such
a result strongly indicates the presence of the free-rider
problem under the reward-sharing mechanism. Lastly, as the
speed of prey increases, the predators’ performance decreases
under all reward mechanisms, with the most selfish agents
performing the best in all conditions; see Fig. 4b.

Equilibrium testing: Having shown that sharing re-
wards cannot generate robust coordination through learning,
our further experiments focus on whether, given a successful
coordinated policy, coordination can be maintained under
sharing rewards, which is the same as testing whether suc-
cessful coordination is a Nash Equilibrium through sharing
rewards. We adopt models of already-coordinated selfish
agents and train them for another around with both the
individual-reward strategy and the reward-sharing strategy.
Our results indicate that performance of agents pretrained
with individual rewards for 60,000 episodes significantly
decreased after training with shared rewards for another
60,000 episodes; see Fig. 5. We conclude that successful
coordination through sharing rewards is not an equilibrium,
since all agents’ policies deviate from it in further training.

DISCUSSION

Our results suggest that sharing rewards is neither neces-
sary nor sufficient for modeling animal coordinated hunting

behavior with reinforcement learning. It is unnecessary since
models without any sharedness (selfish agents) achieve good
training results in the environment and even outperform
agents that share rewards (unselfish agents). It is insufficient
for three reasons. First, our results indicate a free-rider
problem for unselfish agents. Specifically, when agents share
rewards and have their movements subject to individual ac-
tion costs, they become reluctant to move, which negatively
affects the group’s performance. Second, unselfish agents’
hunting performance does not improve when the group size
increases, which contrasts with the observational evidence
that hunting success should be positively correlated with
the group size. Third, the reward-sharing mechanism cannot
maintain a coordinated performance, with agents’ actions
deviated from a well-trained policy, possibly due to the free-
rider problem. Hence, our results support Tomasello’s theory
of chimpanzee behavior that agents with selfish interests
are capable of forming successful coordinated hunting [1].
Furthermore, chimpanzees would participate in group hunt-
ing due to selfish motivations, not to expectations about
the sharing of rewards. Sharing rewards, in this way, might
simply be a byproduct of chimpanzee hunting, instead of an
intelligent design or the cause that improves the coordination
performance, since the hunting performance deteriorates as
the reward distribution gets more distributed.

MARL has been taken as a competitive model of cooper-
ation through agents sharing rewards. However, our results
indicate that this mechanism is not a required precondition
for generating coordinated behavior and might even produce
worse performance than training without such assumption.
Suffering from the free-rider problem, coordination gener-
ated by multiple agents sharing rewards is indeed a special
case when the action cost is zero. Moreover, while various
applications of RL algorithms are realized through combin-
ing the generic algorithm with adjusting reward functions,
we believe that this should not be the whole story when
modeling human-like cooperation. Evidence and theories in
comparative psychology suggest that cooperation is qual-
itatively different from animal coordination [39]. In this
case, although selfish agents in our modeling achieve better
performance than unselfish agents, the selfish strategy alone
is far from sufficient to accomplish most cooperation tasks
human beings face. To better model human cooperation, cer-
tain types of sharedness beyond purely sharing rewards are
indispensable, and a more sophisticated mechanism involving
the idea of the shared agency may be required [40], [39].

APPENDIX

a) MADDPG: Our implementation of the MADDPG
algorithm mostly follows the original implementation [35].
Each group of models (including the predators and prey)
is trained for 60,000 episodes, with 75 time steps in each
episode. We use Adam optimizer [41] with a learning rate
of .01, the soft update rate τ of .01, discount factor γ of .95.
Policies are parameterized by a two-layer ReLU MLP with
128 units per layer for both predators and the prey. Memory
buffer size is 106 with a mini-batch size of 1024.

b) Evaluation: During evaluation, we use the same
environment and record the number of kills by each group
within an episode to represent the group’s performance.



To account for the possible inconsistency in the preys’
performance and avoid models’ overfitting issues, for each
sampled trajectory, we have the predators in the specific
condition chase a prey that is randomly selected from all
trained prey models.
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