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Abstract— Joint attention—the ability to purposefully coordi-
nate attention with another agent, and mutually attend to the
same thing—is a critical component of human social cognition.
In this paper, we ask whether joint attention can be useful as a
mechanism for improving multi-agent coordination and social
learning. We first develop deep reinforcement learning (RL)
agents with a recurrent visual attention architecture. We then
train agents to minimize the difference between the attention
weights that they apply to the environment at each timestep,
and the attention of other agents. Our results show that
this joint attention incentive improves agents’ ability to solve
difficult coordination tasks, by reducing the exponential cost of
exploring the joint multi-agent action space. Joint attention
leads to higher performance than a competitive centralized
critic baseline across multiple environments. Further, we show
that joint attention enhances agents’ ability to learn from
experts present in their environment, even when completing
hard exploration tasks that do not require coordination. Taken
together, these findings suggest that joint attention may be a
useful inductive bias for multi-agent learning.

I. INTRODUCTION

Joint attention (JA) [1] is an important milestone in human
cognitive development [2]. Sometimes referred to as ‘social
attention coordination’, JA is the ability to infer what another
agent is attending to and purposefully coordinate attention
with them, so that you are mutually attending to each other
and the same object or event. JA plays a pivotal role in human
social intelligence [3], [4], and is considered a precursor to
understanding others’ thoughts, beliefs, and intentions [1].

In this paper, we investigate whether a mechanism inspired
by human joint attention can act as a useful inductive bias for
multi-agent reinforcement learning (MARL). While training
multiple agents to learn a coordinated policy would benefit
a number of real-world applications, including robotics [5],
autonomous driving (e.g. [6]) and sensor and communication
networks (e.g. [7]), it poses a difficult reinforcement learning
(RL) problem. This is because the size of the multi-agent
joint action space increases exponentially with the number of
agents, leading to a combinatorial explosion that can make
exploration in MARL a formidable challenge, and impair its
ability to scale to many agents [8], [9], [10]. Past work has
addressed this problem through various ways to factor the joint
value function (e.g. [11], [12]), or through computationally
expensive intrinsic motivations designed to achieve better
coordination [13].

Instead, we propose a simple incentive based on joint
attention, in which agents are rewarded for matching their
attention with other agents in the same environment. This can
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be considered an intrinsic motivation [14], [15] to maintain
joint attention with other agents. To support this objective, we
equip agents with a recurrent deep neural network architecture
which uses visual attention to selectively weight the most
important elements of the environment state while ignoring
the rest. We then give agents an additional reward based on
how well their visual attention map matches that of the other
agents. We hypothesize that focusing on the same elements
of the environment at the same time will reduce the cost of
multi-agent exploration. Although prior work has explored
how joint attention can be applied to human robot interaction
(e.g. [16]), to the best of our knowledge we are the first
to propose joint attention as a way to facilitate multi-agent
coordination.

While the mechanism we study here is not directly
equivalent to human joint attention, we believe that the neural
network architecture we have developed shares important
similarities with human attention. We use a softmax layer
across a limited number of attention heads to create a
bottleneck, forcing agents to selectively attend to only a
few elements of the environment at once, while filtering out
irrelevant details. Human selective attention also involves
filtering irrelevant details to only attend to relevant stimuli
[17]. Secondly, Tomasello—who proposed the concept of joint
attention [1]—describes attention as “goal-driven directed
perception”. Our agents condition their attention on the
contents of their recurrent policy network, which enables
them to direct their attention based on their interaction history
with the environment, in order to attain higher rewards.

Our experiments demonstrate that the proposed joint
attention mechanism enables agents to learn more quickly
and obtain higher final reward in a series of multi-agent
coordination tasks, exceeding the performance of competitive
centralized-critic baselines [11]. Further, we show that when
novice agents are placed in an environment with pre-trained
experts, joint attention allows them to learn the task more
quickly by guiding them to attend to the most salient elements
of the environment. This is true even for environments that
do not require multi-agent coordination, suggesting joint
attention aids social learning more broadly. In humans, joint
attention enables both social coordination and learning from
an expert caregiver. In this paper, we have demonstrated
that our mechanism, inspired by joint attention, can provide
similar benefits to RL agents.

II. RELATED WORK

Multi-agent reinforcement learning. The exponential
increase in the joint action space in MARL can make
learning a joint policy which simultaneously controls all



agents prohibitively expensive, especially as the number
of agents increases [8], [9]. Therefore, many prior works
have taken a Centralized Training Decentralized Execution
(CTDE) approach, learning policies that can be executed
independently but are trained together. Often, this takes the
form of agents that share a joint value function. Examples of
this approach include MADDPG [11], Value Decomposition
Networks (VDN) [18], and QMIX [12]. COMA [19] uses
counterfactual reasoning to enable each agent to isolate its
impact on the joint value function. In contrast, our approach
does not require training a centralized critic.

Jaques et al. [13] propose an intrinsic social motivation
based on rewarding agents for increasing their influence over
other agents’ actions. This mechanism increased coordination
for the social dilemmas studied in original paper, but could
potentially incentivize non-cooperative behavior in other
environments [13]. In addition, calculating the social influence
reward leads to a quadratic increase in computational com-
plexity. Our approach is much less computationally expensive,
and is designed to more directly reward cooperative behavior.

Attention has emerged as a useful tool for multi-agent
learning. For example, Iqbal et al. [20] use centralized
critics with attention to select relevant information for each
agent. Other papers have focused on using attention in graph
networks as an efficient structure for MARL (e.g. [21],
[22], [23], [24], [25]). Attention has also been used in the
development of more modular neural network architectures
[26], [27] . To the best of our knowledge, the concept of joint
attention has not been deployed as a method for improving
multi-agent coordination. Although Faulkner and colleagues
[28] use the term “joint attention”, they are actually referring
to applying attention to the joint action space, and thus are
not aligned with the psychological definition of joint attention
proposed by Tomasello [1], which we study in this paper.
Kobayashi et al. [29] build a mechanism to compute the
degree of “eye contact” between agents in a grid world,
however they but do not build on the concept of joint attention,
and compute eye contact using a fixed formula specific to
grid worlds, rather than using neural network attention to
enable agents to learn what to attend to in the environment.

Attention architectures. Since attention was first proposed
as a mechanism for improving deep neural networks, it has
been used with impressive success in a variety of architectures
(e.g. [30], [31]). Visual attention enables selectively attending
to the important components of an image (e.g. [32], [33],
[34] For the purposes of this paper, we are concerned with
papers which incorporate visual attention into an RL policy
(e.g. [35]). For example, Tang et al. [17] use a modified form
of attention to determine the most important image patches
for a recurrent policy network. Unlike our approach however,
the state of the recurrent network is not used to inform the
attention mechanism. Our architecture is more similar to that
of [36], which was developed to improve the interpretability
of RL agents by learning attention maps that are readable by
humans.

Human-robot interaction. The importance of joint at-
tention in social behavior has been widely recognized by

the human robot interaction (HRI) community (e.g. [16],
[37], [38], [39]). For example, Huang et al. [16] showed that
when robots engage in joint attention with a human, humans
develop a better model of the robot, can perform tasks with it
more easily, and perceive it as more competent and socially
interactive. Many HRI studies focus on embodied aspects of
joint attention, such as following a human’s gaze, or using
pointing gestures, and often involve scripted procedures [40],
[41], [42], [43], [44], [45]. However, this early work focuses
on enhancing HRI, rather than multi-agent interaction. Further,
it does not make use of the modern deep neural network
notion of attention.

III. BACKGROUND

We focus on multi-agent reinforcement learning (MARL)
environments defined by the tuple 〈S,A, T ,R, N〉, where
N is the number of agents, and s ∈ S is the state of the
environment. At each timestep t, each agent k chooses a
discrete action akt ∈ A. Agents act simultaneously and there
is no notion of turn-taking. Let AN be the joint action
space, and ~at be the vector containing the actions of all
agents for timestep t. The transition function depends on
the joint action space: T : S × AN × S → [0, 1], as does
the reward function R : S × AN → RN . Each agent k is
attempting to maximize its own reward by learning a policy
πk that optimizes the total expected discounted future reward:
J(πk) = Eπ

[∑∞
t=0 γ

t rkt+1 | s0
]
, given a starting state s0 and

a discount factor γ ∈ [0, 1]. Note that agents cannot directly
observe other agents actions, states, or rewards, and do not
share parameters. To simplify notation, when we discuss the
architecture and learning objectives for a single agent we
forego the superscript notation.

IV. MODEL ARCHITECTURE

In order to train agents to sustain joint attention with other
agents, we must first have a reliable method for estimating
agents’ visual attention. Therefore, we developed a novel
deep network architecture for computing goal-directed visual
attention for multi-agent RL (shown in Figure 1). Given an
image of the environment state s with height h and width
w, our goal is to apply visual attention to obtain an h× w
Attention Map A for each agent, indicating how strongly it
is attending to each element of the environment. We can then
calculate the similarity between agents’ attention maps in
order to compute the joint attention incentive. The code for
our agents is available in open-source at <URL redacted>.

Given an input image X ∈ Rh×w×c with c channels, we
first process it with a convolutional (conv) layer to extract a
matrix of features, F ∈ Rh×w×cf , where cf is the number of
conv filters. Inspired by [36], we then append a spatial basis
matrix, which is a fixed tensor S ∈ Rh×w×cs to F . The basis
provides spatial information, such that when the attention
layer compresses the image, information about where the
compressed information was located in the input is retained.
Equations for computing S can be found in Section A of the
Appendix.
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Fig. 1: Recurrent visual attention architecture for each agent. Convolution (conv) layers process the input, after which a
spatial basis matrix S is appended to enable retention of location information. Attention is computed based on queries from
the recurrent LSTM policy network, meaning that attention is a top-down, goal-directed selection process based on optimizing
future rewards given the past history of interaction. Queries are applied to the keys matrix K, to produce attention weights
A, which filtering the values image V . The result is input to the LSTM, which produces the next action.

After appending S to F , we input the resulting h×w×cf+
cs matrix into a multi-head attention layer similar to the kind
employed by Transformers [31]. It uses two additional conv
layers, which produce a matrix of keys, K ∈ Rh×w×m×cm ,
and values V ∈ Rh×w×m×cm , where m is the number of
attention heads, and cm is the number of features per head.
The attention weights are computed by taking the inner
product between a set query vectors Q ∈ Rm×cm and K.
Specifically, for each query vector qi in Q, we obtain attention
logits ãix,y:

ãix,y =
∑
j

qijK
i
x,y,j (1)

where i indexes the attention head, and j indexes the feature
within the query and key matrix (which have cm features).

To compute the final normalized attention map A, we apply
a softmax function to the logits for each attention head:

aix,y =
exp(ãix,y)∑

x′,y′ exp(ã
i
x′,y′)

(2)

where aix,y is an entry in A. The softmax forces each head
to concentrate attention on only a few elements of the image.

We use the computed attention to filter the input image
to selectively focus on certain elements, by performing an
element-wise multiplication between A and the values matrix
V . Specifically, the filtered output matrix O ∈ Rm×cm
produced by the visual attention portion of the network is
computed according to oij =

∑
x,y a

i
x,yvx,y,j . The output O

is then fed into the rest of the agent’s policy network.
We parameterize the policy using a recurrent Long Short

Term Memory (LSTM) [46] recurrent neural network (RNN).
Since the policies of other agents are not known, the
environment is inherently non-Markov. Information about
the other agents’ past behavior is not contained in the state
st, but is predictive of the next state, st+1. Therefore, we
choose a recurrent architecture to enable agents to remember
the history of states in which they have observed other agents,
and improve their ability to model other agents’ policies. The
LSTM takes both the output O, and the agent’s position and
direction, p, as input.

Let ht = fL(Ot, pt, ht−1; θL) be the hidden cell contents
of the LSTM for timestep t, where the LSTM is represented

by function fL, and θL are the LSTM parameters. The LSTM
state is used to compute both the RL policy, as well as
produce the query vectors for the attention layer. Specifically,
the query vectors for timestep t are computed using a feed-
forward network fQ, parameterized by θQ, applied to the
LSTM state at timestep t− 1:

Qt = fQ(fL(Ot−1, ht−2; θL); θQ) (3)
= fQ(ht−1; θQ) (4)

This modeling choice means that the attention queries are
produced top-down, based on the LSTM policy’s objective
of maximizing reward, and conditioned on the history of
interaction with the environment and other agents.

To produce the RL policy π(at|st), we pass ht through a
final feed-forward layer. We train the policy using Proximal
Policy Gradients (PPO) schulman2017proximal, as PPO has
been found to be highly effective for multi-agent deep RL
[47]. More details about the training objective and architecture
are given in Appendix .

V. INCENTIVIZING JOINT ATTENTION

Joint attention requires sustaining attention on the same
entities or agents as another agent. Here, we take a relatively
simple approach to incentivizing joint attention in a multi-
agent system. At each timestep, we produce a single h× w
attention map for each agent k, by taking the mean value
over each of the m attention heads. Let Akt be the mean
attention map for agent k at timestep t. We then measure the
difference between Akt and every other agent’s attention map
using the Jenson-Shannon Divergence (JSD):

rJAt = −
K∑
j=1

K∑
k=1

JSD(Akt ||A
j
t ) (5)

= −
K∑
j=1

K∑
k=1

1

2
DKL(A

k
t ||M

jk
t ) +

1

2
DKL(A

j
t ||M

jk
t )

(6)



where

DKL(A
k
t ||A

j
t ) =

∑
x,y

akx,y log
akx,y

ajx,y
(7)

M jk
t =

1

2
(Ajt +Akt ) (8)

Note that because this measure of joint attention is fully
symmetric, it only needs to be computed once for all agents.
We compare using JSD to KL in Appendix Section B Figure
7 and find that both objectives give similar performance, so
we focus on JSD for the remainder of the paper.

The computed attention difference, rJAt is added to each
agent’s reward for timestep t. Therefore, each agent attempts
to maximize their own environment reward rkt , and the shared
joint attention intrinsic motivation, rJAt . Thus, agent k’s
objective is:

J(πk) = Eπ
[ ∞∑
t=0

γt (rkt+1 + βrJAt ) | s0
]

(9)

where β controls the importance of the joint attention
objective. Because other agents’ attention is likely to be
noisy at the beginning of training, we initially begin training
with β = 0, and scale it up over a curriculum of many
episodes.

Note that by adding the joint attention objective as an
additional reward, rather than directly minimizing JSD at
each time step, we allow agents to trade-off a short term
loss in joint attention for a long term gain in environment
reward, or vice versa. In other words, we do not force agents
to constantly match attention at every timestep, but instead
allow them to optimize both environment reward and joint
attention over the course of the episode.

We believe this approach has several key advantages over
prior MARL approaches, which we outline below.

A. No centralized critic

The combinatorial nature of the joint action space in
MARL means that accurately learning a joint value function
requires an exponential increase in sample complexity. Many
existing approaches to multi-agent training use a centralized
critic [19], [11], [48], which is trained to estimate a joint
value function given the actions of all agents. This approach
becomes inaccurate and impractical as the number of agents
increases.

In contrast, our approach does not depend on a centralized
critic, and therefore does not require experiencing many
examples of all possible combination of actions that agents
can take in order to accurately estimate the value of each
combination. Rather, we use other agents’ attention as a way
of guiding agents to learn to attend to salient and relevant
aspects of the environment. As the number of agents increases,
computing which elements are important in the environment is
likely to become more accurate, since more agents contribute
to the computation, and the attention incentive in Eq. 6
becomes less noisy.

That said, in environments requiring coordination, explo-
ration can still be expensive if agents fail to try the right

actions at the same time. However, we hypothesize that the
joint attention incentive will reduce the cost of exploration
by guiding agents to try coordinated actions simultaneously.
Take the game Stag Hunt as an example. In the spatially
and temporally extended version of this game [49], [50], two
agents must simultaneously step on a Stag which is moving
around the environment. Although it is relatively unlikely
that this event occurs through random exploration, if both
agents are simultaneously attending to the Stag, they may be
more likely to take actions related to it at the same time.

B. Computational complexity

The insight that incentivizing coordination could reduce the
cost of multi-agent exploration was explored in [13], which
gave agents an intrinsic motivation to increase the causal
influence, or mutual information, between their action and the
actions of other agents. While this approach did not require
a centralized controller, it was extremely computationally
expensive. To compute the influence reward for each of
K independent agents required sampling |A| actions and
computing predictions about how each of the other agents’
predicted action would change. Computing this influence
reward required O(|A|K) additional network passes per
timestep during training.

Instead, our approach does not require passing any addi-
tional data through agents’ networks. Each agent computes
its attention weights while it is acting in the environment, and
these are stored into the replay buffer. We can then compute
the joint attention incentive in Eq. 6 without ever re-running
the agent’s network, leading to a simpler and more efficient
approach.

VI. EXPERIMENTAL SETUP

In this section, we describe the multiagent environments,
baselines and ablations used to test the effectiveness of the
joint attention incentive. For the multi-agent environments,
we not only compare agents’ performance over the course
of training, but also how well agents can generalize to
modified versions of the environments at test time. All
code used in our experiments is available in open-source
at https://github.com/google-research/
google-research/tree/master/social_rl/
multiagent_tfagents/joint_attention. Further
training hyperparamters and evaluation procedures are
outlined in Appendix .

A. Baselines and ablations

We compare our algorithm against MADDPG [11], a
popular CTDE method with a centralized critic. A recent
benchmarking paper found that for the type of coordinated
navigation task studied in this paper, MADDPG provides
superior performance to more computationally expensive
methods, such as QMIX [12], making MADDPG a strong
baseline. We use the authors’ implementation of MADDPG,
from: https://github.com/openai/maddpg.

We also compare against two independent PPO architec-
tures, each with fully decentralized training. The Independent
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PPO agents use a simplified architecture which processes
the input with convolutional layers and updates a recurrent
LSTM policy; it does not use attention. The Attention
agents use the attention architecture described in Figure 1,
without applying the joint attention bonus (and with fully
decentralized training). This ablation gives an indication of
how much the improved performance obtained with the joint
attention agents can be attributed to the architecture.

B. Environments

We evaluate our algorithm on four multi-agent environ-
ments explained in detail in Appendix Section A and Figure
6. Environments are randomly generated each episode, and
are implemented in a multi-agent, fully-observed version of
Minigrid [51]. We are releasing them in open-source at <URL
redacted>.

These first three environments require agents to coordinate
with other agents in order to effectively solve the task.
Meetup is a discrete version of the particle-world Meetup
proposed in the MADDPG paper [11]. In Meetup, agents
must collectively choose one of K landmarks and congregate
near it; the goal landmark changes depending on the current
position of all agents. ColorGather is a modified version of
the coin game in [52], where agents must collect the same
coin that other agents are currently collecting. StagHunt is
a temporally and spatially extended version of the classic
matrix game, which has also been investigated in several other
papers (e.g. [49], [53], [50]). The environment contains two
tasks. The agents can either collect berries, worth one point
for the agent that collects it, or hunt stags, which are worth
5 points for both agents. Hunting stags requires collaboration
between the agents, as one agent must stand adjacent to the
stag while the other agent collects it.

TaskList is a task that can be solved by a single agent,
but which comprises a hard exploration problem. Agents
must learn to complete a series of tasks independently, in
the correct order: pick up a key, open a door, pick up a ball,
open a box, drop the ball, reach the goal. We use TaskList
to test whether joint attention can help novice agents learn a
task more quickly, by training novices to attend to the same
elements of the environment as experts, even when the task
does not explicitly require coordinating with the expert.

VII. RESULTS

This section investigates the following questions: i) Can
joint attention enhance multi-agent coordination, and if so,
how? (Sec. VII-A); ii) What is its effect on generalization to
new environments at test time? (Sec VII-B; and iii) Can joint
attention improve the ability of agents to learn from experts
in their environment? (Sec VII-C).

A. Multi-agent coordination

Figure 2 shows evaluation results throughout training for
each technique in the multi-agent coordination environments.
The Independent PPO baseline performs poorly, learning
more slowly than the other techniques. This is likely due to
the exponential sample complexity inherent in multi-agent

exploration. However, simply using the proposed attention
architecture leads to competitive performance, even when
agents are trained independently. In fact, the performance of
the architecture is superior to that of MADDPG, in spite of the
fact that MADDPG uses a centralized critic, and the attention
architecture agents were trained in a fully decentralized
fashion. This is consistent with recent findings on multi-agent
StarCraft [54], which showed that independent PPO training
can surpass CTDE MARL algorithms given a sufficiently
advanced PPO implementation.

Adding the joint attention incentive significantly speeds
learning and improves performance above MADDPG in all
three environments. In ColorGather, joint attention performs
equivalently to the attention architecture. Since there is no
penalty for picking up the wrong object, agents can effectively
solve ColorGather by focusing on the objects closest to
themselves, rather than the objects attended to by other
agents (and indeed, we found this happens about 25% of
the time with both types of agents). However, in Meetup
and StagHunt, joint attention significantly improves agents’
ability to coordinate. We note that in StagHunt, all baseline
methods only collect berries, and do not learn the difficult
coordination task of hunting the stag together. In contrast,
the joint attention agents are able to mutually attend to the
stag at the same time (as shown in Figure 3), enabling them
to learn to successfully complete the task.

Figure 3 shows sample attention maps for agents trained
with and without joint attention. Even without the joint
attention incentive, the agents learn to focus on salient aspects
of the environment, such as multiple meetup points (3a), or
berries (3e). In ColorGather, agents attend to the region around
themselves, whether they are given the joint attention incentive
(3d) or not (3c), which is consistent with the results of Figure
2. However, when the joint attention bonus is applied to
Meetup and StagHunt, agents are able to coordinate their
attention to simultaneously focus on the same elements. In
Figure 3b, all agents’ attention is heavily focused on each
other, and the single waypoint where they are meeting. In
Figure 3f, agents’ attention is focused on the stag and the
area around it, which enables them to catch the stag. These
results help explain how agents can use shared attention to
make the challenging problem of joint exploration easier.

B. Generalization

We are interested in assessing the generalization of our
algorithm, because deep RL techniques often fail to generalize
to even slight modifications of the training environment [55],
[56], [57]. To that end, we introduce modifications to the
environments at test time, and measure zero-shot performance
under these modifications. For example, we add new obstacles,
change the number of meetup points or coin colors, or
remove all stags. A full description of the test environments
is available in Appendix Section B and Figure 8. On each
environment, we evaluate our best performing policy for each
method for 30 episodes.

Figure 4 shows the zero-shot performance of each method
in the modified test environments. With the exception of the



(a) Meetup (b) ColorGather (c) StagHunt

Fig. 2: Collective average reward in multi-agent coordination environments. The independent PPO baseline learns slowly
and reaches lower final performance on all three tasks. Simply adding the proposed attention architecture improves agents
performance, enabling them to achieve higher scores than vanilla PPO and MADDPG, even though the agents are trained
independently. MADDPG learns more quickly and stably than independent PPO, but converges to a suboptimal policy. Finally,
the joint attention incentive provides clear benefits for increasing learning speed and final performance.

(a) Meetup without joint attention (b) Meetup with joint attention incentive

(c) ColorGather without joint attention (d) ColorGather with joint attention incentive

(e) StagHunt without joint attention (f) StagHunt with joint attention incentive

Fig. 3: Comparison of learned attention maps. Within each figure, the left-most square is the ground-truth state of the
environment, with the position of agents and objects over the past five timesteps shown using faded versions of the element.
The next images show the attention of the individual agents, outlined in the colour of the agent it represents. The circles are
the elements the agents are attending to, where size represents the attention strength (larger is stronger), and the transparency
represents the timestep (faded is farther in the past). Squares highlighted in grey represent elements that are mutually attended
to by agents at the same time. The left column shows that agents have learned to use attention to focus on salient elements
of the environment. The right column demonstrates that adding the joint attention incentive helps agents coordinate their
attention on the same elements, enabling them to perform coordinated behaviors (e.g. catching the stag in (f)).



(a) Meetup (b) ColorGather (c) StagHunt

Fig. 4: Results of generalization of the best-performing seed to perturbations of the environment at test time. The attention
architecture and joint attention incentive lead to equivalent or improved generalization.

Fig. 5: Results of learning jointly with an expert vs. learning
alone in the TaskList environment. The joint attention
incentive enables agents to learn more quickly from experts,
even in a hard exploration task that does not explicitly require
coordinating with another agent.

NoStag environment, the attention and joint attention agents
always generalize equally well or better than the baselines.
The reduction in joint attention performance in the NoStag
environment is because the baseline learned to ignore stags
and only pick up berries (as seen in Figure 3e). Similarly,
the large improvement in the AllStags environment is due
to the fact that only the joint attention agents learned to
catch stags. Overall, these results help establish that the joint
attention architecture and incentive do not decrease agents’
ability to generalize to new environments, and may improve
it by filtering out irrelevant elements like walls.

C. Learning from experts

We hypothesize that when there are expert agents present
in the environment, joint attention could scaffold the learning
of novice agents, by training them to focus on the parts of the
environment relevant for solving the task. Therefore, we take
expert agents pre-trained in TaskList, and place those experts
in the same environment as newly initialized, novice agents.
Since joint attention enhances the ability of human caregivers
to teach their children [1], [4], we expect it could provide
similar benefits to agents in a multi-agent system. However,
prior work [58] has shown that vanilla model-free RL agents

struggle to learn from experts in their environment.
Figure 5 shows the training curves resulting from placing

two novice agents into the TaskList environment with a
single pre-trained expert. Unlike in prior work [58], both
the attention architecture and joint attention incentive show
improved learning in the presence of experts as compared to
learning from scratch. The joint attention incentive provides
a further increase to learning speed above the architecture,
reducing the sample complexity of reaching optimal perfor-
mance. We hypothesize this is because joint attention provides
an additional signal which guides the novice agent’s focus.
These results demonstrate that joint attention can help in
learning from experts even in tasks where the goal is not
about coordination.

VIII. DISCUSSION

Overall, our results suggest that joint attention can enhance
social learning, generalization, and coordination with other
agents. We hypothesize that joint attention reduces the cost
of exploring over the joint action space. This is because when
agents are focused on the same elements of the environment
at the same time (as in Figure 3f), they are more likely to
try actions related to that element simultaneously. Therefore,
joint attention provides a relatively simple and efficient way
to reduce the cost of multi-agent exploration. Further, joint
attention enables agents to learn from each other’s experience
by guiding their attention to the important parts of the
environment. Finally, we show that our method provides
equal or improved generalization performance, which is an
important consideration for deep RL algorithms. These results
provide promising evidence that joint attention may be a
useful inductive bias for RL agents.

Limitations and future work. We adopted the centralized
training, decentralized execution (CTDE) framework popular
in prior multi-agent deep RL work (e.g. [11], [19], [12], [18]).
However, CTDE assumes that all agents are trained together
under the control of a centralized entity, which does not apply
for many real-world scenarios which involve coordinating
with humans, such as autonomous driving or household
robotics. Further, we rely on fully-observed environments
in which all agents see the same observations. In future, we
would like to improve upon techniques for inferring human



attention (e.g. [40], [43]), and train agents to maintain joint
attention with human interlocutors. We hypothesize this could
facilitate human-AI coordination.

In this paper we consider a uniform joint attention reward
which is the same for all agents. Interesting future directions
would be to reward as for matching a median attention map
(to avoid penalties for not matching with errant outlier agents),
or rewarding how well attention is matched with a single
other agent that is closest in attention space.
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APPENDIX

We use the same network architecture across all agents.
The environment observation is first processed by a 3x3
convolutional layer with 64 filters, stride 1, padding to
maintain the size of the input, and ReLU activations. In
our attention architecture, we concatenate a spatial basis of
depth 8 to the image features, then use 4 attention heads of
depth 16 to create K and V. The scalar inputs are processed
with a single fully connected layer of size 5. For the policy
network we use an LSTM with cell size 64, followed by
two fully connected layers with hidden size 64. The value
network is identical to the policy network and shares no
weights. During training we anneal the weight of the bonus
reward β linearly from 0 to 10−2 over the first 200000 steps.
We optimize the policy and value networks using Adam with
a learning rate of 10−4.

A. Spatial basis equations

Our spatial basis matrix S is a 2D version of the position
encoding (PE) found in [31], where the first cs/2 basis vectors
are the position encoding of the horizontal coordinate x, and
the second cs/2 are the position encoding of the vertical
coordinate y. A similar 2D position encoding is proposed
in [59]. The following equations are used to produce each
h×w layer of the spatial basis matrix S, where i varies from
1 to cs/4.

PE(x, y, 2i) = sin(x/1004i/cs)

PE(x, y, 2i+ 1) = cos(x/1004i/cs)

PE(x, y, 2i+D/2) = sin(y/1004i/cs)

PE(x, y, 2i+D/2 + 1) = cos(y/1004i/cs)

To find our hyperparameter settings, we performed a grid
search across the following: learning rate ∈ [10−3, 10−1],
batch size ∈ [32, 128], training epochs per batch ∈ [3, 10],
number of convolutional layers ∈ [1, 3], number of fully
connected layers ∈ [1, 3], fully connected layer size and
LSTM layer size ∈ [32, 256], attention bonus weight ∈
[10−4, 10−1, attention bonus scale up steps ∈ [103, 106].

For MADDPG, we use the default training hyperparameters
from the open sourced code. The replay buffer consists
of the last 1024 episodes, from which we sample a batch
of 1024 steps for training. The networks are trained with
Adam with learning rate 10−2 for one gradient step every
100 environment steps, and updated with polyak averaging
with τ = 0.99. The architecture used is exactly identical to
the I-PPO baseline, without the recurrent component. The
primary reason we incorporate a recurrent network in our
architecture is to provide context to the attention heads. As
the environments are fully observed, the recurrent component
is not necessary for solving the task.

To evaluate our method and baselines, we pause the training
every 3000 episodes and evaluate for 10 episodes using greedy
decentralized execution using the TFAgents framework [60].
For each curve, we plot the mean and one standard deviation

range across 5 sets of agents. Each training and evaluation
run takes between 1 and 3 days, depending on environment,
on a single cloud based CPU instance, such as those found
on AWS or Google Cloud.

The environments studied in this paper are visualized in
Figure 6. In each, agents receive a fully observed encoding
of the environment, where object type (agent, ball, stag, wall,
door, etc) and color are identified, as well as the agent’s
own position and the direction it is facing. Rather than using
pixels, our agents see an encoded version of the environment
with three channels, as proposed in [51].

Meetup is a discrete version of the particle-world Meetup
proposed in the MADDPG paper [11]. In Meetup, agents
must collectively choose one of K landmarks and congregate
near it. At each timestep, each agent receives reward equal to
the change in distance between itself and the landmark closest
to all three agents. The goal landmark changes depending
on the current position of all agents. When all K agents are
adjacent to the same landmark, the agents receive a bonus of
1 and the episode ends.

ColorGather is a modified version of the coin game in
[52]. In ColorGather, coins of N different colors are randomly
placed around the environment. The agents must collectively
choose one color and collect coins of that color. Each time
a coin is collected, a new coin of that color is placed. All
agents are rewarded for the first coin collected regardless of
color, and then for each coin that matches the most-collected
color that episode.

StagHunt is a temporally and spatially extended version of
the classic matrix game, which has also been investigated in
several other papers (e.g. [49], [53], [50]). The environment
contains two tasks. The agents can either collect berries, worth
one point for the agent that collects it, or hunt stags, which
are worth 5 points for both agents. Hunting stags requires
collaboration between the agents, as one agent must stand
adjacent to the stag while the other agent collects it.

B. Generalization environments

Figure 8 shows each modified test environment designed
to assess how well agents can generalize to tasks outside the
training distribution. In the ‘Cluttered’ environment, 10% of
the open space is filled with walls, which constitute a new
object not encountered during training. The ‘SingleTarget’
environment has only a single meetup point, while the
‘MultiTarget’ environment has 5, rather than 3. In the
‘RandomCoins’ environment, the number of coins of each
color varies between 1 and 4 each episode, rather than always
being 3, while the ‘RandomColors’ environment has a random
number of colors between 2 and 4, rather than always being
3. The ‘NoStag’ environment has only berries and no stags,
while the ‘AllStags’ environment has only stags and no berries.
Note, that some of the environments are easier, and some are
more difficult. For example, ‘NoStag’ environment is easier
than ‘StagHunt’, while ‘AllStags’ is more difficult. and which
are described in Section VII-B.



(a) Meetup (b) ColorGather (c) StagHunt (d) TaskList

Fig. 6: Multi-agent environments. (a-c) are multi-agent environments in which agents (triangles) must coordinate effectively
with each other to solve the task. In Meetup (a), agents are rewarded for congregating at the same landmark (red box) as
other agents, which updates dynamically as the location of other agents changes. Similarly, the color of objects that agents
must pick up in ColorGather (b), changes based on which object other agents have collected most. In StagHunt (c), agents
can receive individual rewards for collecting berries, but will receive a higher reward if they cooperate to step on the stag
while the other agent is adjacent to it. The last environment, TaskList (d), is used for testing whether joint attention helps
novice agents learn from an expert in the same environment, but does not require coordination. Instead, agents must learn to
independently complete a complex series of tasks such as picking up objects and using keys to open doors. We use TaskList
to asses if agents can learn effectively from viewing experts completing the task.

Fig. 7: Comparison of different methods for calculating the
divergence between agents’ attention for the joint attention
incentive, in Meetup. There are no significant differences in
performance between KL, JSD, and clipped JSD, suggesting
the method is robust to the choice of divergence metric.
Results for the other environments were similar.

C. Comparing joint attention metrics

In addition to JSD, we evaluate two other methods
for computing the attention bonus. Kullback-Liebler (KL)
divergence (Eq. 7) is a natural choice for computing the
shared information between the attention weights of two
agents. We also evaluate a clipped version of JSD, where
prior to normalization all logits less than a threshold are
clipped to negative infinity for the bonus computation only.
The actual weights used in the attention computation remain
unchanged. We hypothesized that clipping would improve the
bonus by making it less noisy, since it would not be affected
by small differences in regions of the attention map that were
not agents’ focus.

Figure 7 shows the performance of the different methods
used for computing the joint attention incentive. Both JSD
and KL provide similar performance, showing the method is

robust to the choice of divergence metric. JSD may still be
preferred over KL for its simplicity, since JSD produces a
single rJA objective that is shared by all agents. We also see
that clipping the JSD objective is unnecessary.



Fig. 8: Visualization of environments used to test how well agents can perform on tasks that are outside the distribution of
training tasks. Results are shown in VII-B
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