
Two-Stage Clustering of Human Preferences
for Action Prediction in Assembly Tasks

Abstract— To effectively assist human workers in assembly
tasks a robot must proactively offer support by inferring
their preferences in sequencing the task actions. Previous work
has focused on learning the dominant preferences of human
workers for simple tasks largely based on their intended goal.
However, people may have preferences at different resolutions:
they may share the same high-level preference for the order
of the sub-tasks but differ in the sequence of individual
actions. We propose a two-stage approach for learning and
inferring the preferences of human operators based on the
sequence of sub-tasks and actions. We conduct an IKEA
assembly study and demonstrate how our approach is able to
learn the dominant preferences in a complex task. We show
that our approach improves the prediction of human actions
through cross-validation. Lastly we show that our two-stage
approach improves the efficiency of task execution in an online
experiment and demonstrate its applicability in a real-world
robot-assisted IKEA assembly.

I. INTRODUCTION

There are many assembly, service, repair, installation, and
construction applications where many different workers may
need to perform the same task. For example, consider the
task of replacing a bearing on a machine tool located at the
shop floor. Even though these tasks have fixed guidelines,
there is some variability in the way each worker performs
a task because of individual preferences. Robots can help
in improving the efficiency of such tasks by adapting to the
individualized preferences of human workers and proactively
supporting them in their task.

While the space of possible preferences can be very large,
previous work has shown that people can be grouped to a
few “dominant” preferences: In human-agent teams, users
cluster to a set of “reasonable” behaviors, where people in
the same cluster have similar beliefs [1]. Similar groupings
exist in game playing [2]–[5] and education [6]–[9].

What makes the problem particularly challenging in com-
plex tasks, is that these dominant preferences exist in differ-
ent resolutions. In an IKEA assembly study that we use as
a proof-of-concept throughout the paper, we observed that
some participants preferred to assemble all shelves in a row,
while others alternated between assembling the shelves and
assembling the boards (Fig. 1). Moreover, within the first
group, participants also differed in how they connected the
shelves to the boards: some connected all shelves to boards
on just one side first (as in Fig. 1(a)), while others preferred
to connect each shelf to boards on both sides.

Therefore to effectively assist a new worker the robot must
learn the dominant preferences of workers at different levels
of abstraction. Using insights from clickstream analysis [10],
we propose abstracting action sequences to sequences of

(a) User preference 1 (b) User preference 2

Fig. 1: Robot-assisted IKEA assembly. (a) Some users preferred to connect
all the shelves in a row. (b) Other users connected just two shelves to the
small boards first. For effectively assisting the users, a robot must predict
their preference and supply the parts accordingly.

events, where events are sub-sequences that are shared across
different tasks and workers. A high-level preference is cap-
tured by a sequence of events, while a lower-level preference
captures how each event is executed. We propose clustering
users on two levels, over events and over actions within each
event, as opposed to clustering based on the sequences of
individual actions as in previous work [11].

We show the applicability of our method in a user study
where 20 users assemble an IKEA bookcase. We learn the
high and low-level preferences of the users, which enables
accurate prediction for a new user performing the same
task. Through an online assembly experiment we show that
assisting users this way, improves task efficiency. We finally
show the applicability of the system in a real-world robot-
assisted IKEA assembly demo.

II. RELATED WORK

Clustering dominant preferences. Similar to prior work
in task planning, we consider preference as the subset of
action sequences from the set of multiple sequences that
solve a given task [12]. Related work includes learning user
preferences during an assembly task from demonstrations
[13], [14], via interactive reinforcement learning [12], [15] or
active reward learning [16]–[18], where previous demonstra-
tions can be used as priors [19], [20]. While each user can
have a different preference, our goal is to cluster the users
to a small set of dominant preferences, like human motion
prototypes [21] for robot navigation or human preference
stereotypes for human-robot interaction [22].

Most relevant to ours is prior work in identifying dominant
user preferences from sequences of user actions in a surface
refinishing task [11]. Users with similar action transition ma-
trices were clustered using a hard Expectation Maximization
(EM) algorithm to obtain the dominant clusters. However the
task was simple as each user preference corresponded to a
different final robot configuration, and thus one-stage clus-
tering was sufficient for capturing the dominant preferences.



Clustering click-event sequences. The problem of group-
ing users based on their preferred sequence of doing tasks is
similar to the problem of clickstream analysis [10], [23]–
[25]. A clickstream is a sequence of timestamped events
generated by user actions on a webpage and hence is
comparable to a sequence of actions. Prior work clusters
clickstreams of multiple users based on their longest common
sub-sequence [23] or frequency of sub-sequences [25].

To cluster users at different resolutions, prior work uses
Levenshtein distance to form macro and micro preference
clusters [10]. Recent work [24] uses hierarchical clustering
to users first into high-level clusters and then into subsequent
low-level clusters. We bring these insights from clickstream
clustering to the robotics problem of clustering the action
sequences of users in assembly tasks.

III. METHODOLOGY

Fig. 2: Flowchart of our proposed two-stage clustering and inference method

The proposed method consists of two phases (see Fig. 2):
(1) an offline training phase which takes as input a set of user
demonstrations of the entire assembly task and learns the
dominant preference clusters at different resolutions, and (2)
an online execution phase where we estimate the probability
of a new user belonging to one of the clusters based on their
observed actions, and predict the next robot action.

Based on our observation that users prefer to perform
actions that require the same parts in a row; we first convert
each user demonstration into a sequence of such events.
Thus each event in a demonstration requires a specific set
of parts to be supplied by the robot i.e. a specific set of
secondary actions (non-critical actions like supplying parts).
The high-level preference of each user is thus the order in
which they perform the events. Further, for each event in a
high-level preference, users may have a different low-level
preference for the order in which to supply the set of parts
i.e. order in which the secondary actions must be performed.

We learn the high and low-level preferences in the offline
phase by clustering users based on their sequence of events
and sequence of secondary actions respectively. Accordingly
in the online execution phase we first infer the high-level
preference of a new user and then infer the low-level pref-
erence to determine the next secondary action to execute.

IV. OFFLINE TRAINING PHASE

We assume a set of demonstrated action sequences X .
Similar to prior work [26], we distinguish the actions A in
the demonstrated sequences into two types: primary actions
(ap ∈ AP ) which are the task actions that must be performed

by the user, and secondary actions (as ∈ AS) which are the
supporting actions that can be delegated to the robot.

In the training phase, each user demonstration x ∈ X is
some sequence of primary and secondary actions e.g., x =
[as1, a

s
2, a

p
1, a

p
2, . . . , a

s
M , apN ] which has M secondary and N

primary actions. We wish to model the online execution as
a turn-taking model where at each time step t, the robot
performs a set of secondary actions st, followed by the user
performing a primary action apt . Thus we can re-write the
user demonstrations as a sequence of alternate secondary
and primary actions e.g., x = [s1, a

p
1, s2, a

p
2, . . . , sN , apN ].

Where, in this example, s1 = [as1, a
s
2] is the set of secondary

actions that must be executed before the primary action ap1,
while s2 = [NOOP ] means that no other secondary action
is required to be executed before ap2, and so on.

A. Converting User Demonstrations to Event Sequences
We first convert each user demonstration to a sequence of

events. An event e is defined as - consecutive primary actions
that require the same set of secondary actions. Thus an event
e from time step ta to tb is the sequence of primary actions
pta:tb = [apta , . . . , a

p
tb
] with preceding secondary actions

sta:tb = [sta , . . . , stb ] where,

si ⊆ {sta:i−1} ∀i ∈ [ta + 1, . . . , tb] (1)

Example: Consider the demonstration x = [[as1, a
s
2], a

p
1,

[NOOP ], ap2, [a
s
3], a

p
3]. Here the secondary actions [as1, a

s
2]

precede the first primary action ap1, while NOOP precedes
the next primary action ap2. As s2 = [NOOP ] = ∅ (null set)
is a subset of the set of previous secondary actions {as1, as2},
we consider the primary actions p1:2 = [ap1, a

p
2] to belong

to the same event. Now if, the next secondary action is also
a subset of its previous secondary actions i.e. s3 = [as3] ⊆
{s1:2}, all primary actions belong to the same event e1:3,
with p1:3 = [ap1, a

p
2, a

p
3] and s1:3 = [[as1, a

s
2], [NOOP ], [as3]].

In this case, the event sequence is xe = [e1:3]. However
if [as3] 6⊆ {as1, as2}, then ap3 will belong to a new event e3:3,
with p3:3 = [ap3] and s3:3 = [as3]. Thus, in this case, the event
sequence will be xe = [e1:2, e3:3], where e1:2 = (p1:2, s1:2).

Two events are equal if they share the same set of
secondary actions - {sta:tb}.
B. Two-Stage Clustering

1) Clustering Event Sequences: We cluster the converted
event sequences xe ∈ Xe of each user to determine the
dominant high-level clusters zh ∈ ZH . Details of the method
for clustering the sequences are provided in Sec. IV-C. In
the online execution phase, we will infer the high-level
preference z∗h of a new user to determine the current event,
and thus the set of secondary actions for that event.

2) Clustering Secondary Action Sequences: To learn
the low-level preferences for each event e in the dominant
clusters Zh, we cluster the participants based on the sequence
of secondary actions in each instance of the event e, to
determine the dominant low-level clusters zl ∈ Ze

L. In the
online execution phase, we will infer the low-level preference
of the new user for the current event and thus determine the
sequence in which the secondary actions must be executed.



C. Clustering Method

For each stage, we apply hierarchical clustering [27],
[28] considering a modification (dmod) of the Levenshtein
distance [29] (dlev) used in clickstream analysis [10], [30] as
the distance metric. The number of clusters formed depends
on a distance threshold. We generate clusters for increasing
distance thresholds, and select the optimal distance based on
the variance ratio criterion (VRC) [31] (also called calinski-
harabasz score) which is a common metric for distance-
based clustering [32].

V. ONLINE EXECUTION PHASE

In the online execution phase we infer the high and low
level preferences of new users as they are executing the task.
At each time step t, as the user performs a primary action,
the robot predicts the next secondary action.

1) Inferring high-level preference: At each time step t,
we observe the primary action of a new user and append it
to the actions observed so far. We then convert the current
sequence of actions x1:t of the new user to a sequence of
events xe

1:t in the same way as in the offline phase. We use
Bayesian inference to predict the high-level preference by
computing the probability of observing the event sequence
xe
1:t for each high-level cluster zh ∈ ZH .

p(zh|xe
1:t) ∝ p(xe

1:t|zh)p(zh)

Here, p(zh) is simply the ratio of the number of users in the
cluster zh to the total number of users in all the clusters ZH .
However for calculating p(xe

1:t|zh) we re-compute the event
sequences of users in zh considering their action sequences
only up to the time step t. Therefore:

p(xe
1:t|zh) =

No. of users in zh with same xe
1:t

Total no. users in zh

We then determine the high-level preference as z∗h =
argmaxzh∈ZH

p(zh|xe
1:t). If there are two high-level clusters

with the same maximum probability, we select one randomly.
2) Inferring low-level preference: Once we infer the high-

level preference z∗h of the new user, we identify the most
likely event sequence xe∗ in that cluster. We assume that
the new user follows that sequence xe∗ to index the event
ongoing at time step t + 1 i.e. et+1 (in a slight abuse of
notation). Given the sequence of secondary actions set+1

performed so far within the event et+1, we use Bayesian
inference to infer the low-level preference zl ∈ Z

et+1

L , where
Z

et+1

L is the set of low-level preferences for the event et+1:

p(zl|set+1) ∝ p(set+1 |zl)p(zl)

We select the most likely low-level preference z∗l , identi-
cally to the high-level preference case. The robot can then
perform the most likely secondary action st+1 in z∗l to
proactively assist the user. If the user accepts st+1 we append
that to x1:t. If the user rejects st+1 and performs a different
secondary action s

′

t+1 instead, we append s
′

t+1 to x1:t.

VI. USER STUDY

We wish to show that the proposed method can effectively
identify the dominant preferences of users in an IKEA
bookcase assembly task, and use the found preferences to
accurately predict the next secondary action of a new user.

Fig. 3: Top view of study setup (left) and assembled bookcase (right)

A. Study Setup

We conducted an IKEA bookcase assembly study with 20
subjects, out of which 18 (M = 11, F = 7) completed
the assembly. We provided each subject with a labelled
image of the bookshelf (Fig. 3) and demonstrated how the
connections are made. Users then practiced the connections
for five minutes. We asked the subjects to plan their preferred
sequence with the goal of assembling the bookcase as fast
as they can, but did not provide any instructions regarding
the order of the assembly. We recorded a video of each user
demonstration, and annotated their actions using ELAN [33].

B. Analysis of User Preferences

We consider bringing a part from the storage to the
workcell as a secondary action and all connections in the
assembly as primary actions. The bookcase has 4 types
of parts: long boards, short boards, connectors and shelves
(total 17 parts), and 32 different connections. Thus each user
demonstration is a sequence of N = 32 time steps.

Fig. 4: Event sequences. ‘boards’ refers to an event of connecting long and
short boards, ‘con’ refers to an event of connecting assembled boards using
connectors, ‘shelves’ refers to an event of connecting shelves.

The assembly task is fairly complex; the 32 primary
actions can be ordered in more than 24! ways! However most
users preferred to perform similar actions in a row: 14 users
performed all long and short board connections in a row, and
7 users connected all connectors and all shelves in a row.

Event Sequences. We first visualize the sequence
of events for each user (shown in Fig. 4). Users



(a) High-level clusters (b) Low-level clusters

Fig. 5: IKEA assembly user study: (a) Dominant high-level clusters (grey
rectangles) formed by clustering the event sequences. (b) Dominant low-
level clusters (grey rectangles) formed by clustering the secondary actions
sequences for the event of all shelf connections (shown in yellow in Fig. 4).

[0, 1, 4, 5, 11, 16] had the same event sequence: short and
long board connections (shown in grey), connector and
board connections (green), and shelf and board connections
(yellow). Similarly, other groups of users - [12, 13, 15], and
[3, 9, 10, 14, 17] also had same event sequences.

Dominant clusters. To find the high-level preferences, we
cluster the event sequences using the modified Levenshtein
distance metric (Sec. IV-C) which results in the hierarchy
shown in Fig. 5(a). We partition the users at a distance thresh-
old of dmod = 4 (shown as dotted line) based on the VRC
[31] to obtain three dominant high-level clusters (shown in
grey rectangles). Therefore we see that users cluster to a
small set of dominant preferences despite not being provided
any instructions regarding the order of assembly.

Users had different preferences for the same event as
well. For example, within the event of performing all shelf
connections in a row, shown in yellow in Fig. 4, clustering
the sequences of secondary actions of all users results in
the hierarchy shown in Fig. 5(b). Partitioning at the optimal
distance threshold dmod = 0 gives us two dominant low-level
clusters (shown in grey rectangles). Users 0, 4 and 16 prefer
to connect each shelf to boards on one side before connecting
on the other side, whereas users 5, 1 and 2 prefer to connect
each shelf to boards on both sides at a time.

C. Evaluation & Results

We want to show that our two-stage clustering approach is
useful for predicting the next secondary action of a new user.
Therefore we make the hypotheses: H1 - Clustering users
based on their sequence of events improves the accuracy of
predicting the next secondary action, compared to clustering
based on the sequences of individual primary actions (base-
line). H2 - The two-stage clustering of users improves the
accuracy of predicting the next secondary action, compared
to clustering based on just the sequences of events.

We perform leave-one-out cross-validation, and compare
the accuracy of predicting the next secondary action at each
time step, averaged over 100 trials1.

1) Importance of High-level Clusters: We compare the
prediction results from clustering based on sequence of

1We average the accuracy over 100 trials as if the probabilities for two
(or more) preferences were same while selecting the most likely dominant
preference, we pick one at random with uniform probability.

(a) Importance of high-level (b) Importance of low-level

Fig. 6: Cross-validation accuracy for 18 users averaged over 100 trials.
(a) Clustering on event sequences compared to clustering primary action
sequences. (b) Two-stage clustering compared to clustering event sequences.

events (only low-level) to clustering based on the sequence
of primary actions. While clustering the abstract event
sequences leads to three well-defined dominant clusters
(Fig. 5(a)), clustering primary action sequences generates
only two clusters for a distance threshold of 63 (based on
VRC) with a high variability within each cluster. A two-
tailed paired t-test showed a statistically significant difference
(t(17) = −3.232, p = 0.004) in prediction accuracy
averaged over all timesteps and trials, between the event-
based method (M = 0.796, SE = 0.041) and the baseline
(M = 0.693, SE = 0.041). This supports hypothesis H1.

2) Importance of Low-level Clusters: We also compare
the prediction accuracy with and without the second stage
clustering, averaged over all timesteps and trials. A paired
t-test showed a statistically significant difference (t(17) =
−2.34, p = 0.03) between predicting with event sequences
only (M = 0.796, SE = 0.041) and predicting with the
two-stage framework (M = 0.820, SE = 0.043). This
supports hypothesis H2.

VII. ROBOT-ASSISTED ASSEMBLY

We also wish to show that predicting the next secondary
action using our proposed two-stage approach improves the
efficiency of the task. Therefore, we conducted an online
experiment on Amazon Mechanical Turk where 80 users
played a shelf assembly game three times each, with and
without robot assistance. However only 52 (out of 80)
users completed all game trials and survey questions. For
these users, a paired t-test showed a statistically significant
difference (t(51) = 2.155, p = 0.036) in the time required
to assemble with (M = 55.794, SE = 3.439) without
assistance (M = 66.948, SE = 6.05). This informs us that
performing the secondary actions as per our proposed method
can indeed be helpful for the users.

Lastly we also perform a real-world IKEA assembly task
with two participants2. For both the participants, we observed
that robot assistance based on our two-stage approach, al-
lowed the user to stay inside the workcell and perform just
the primary actions. We hypothesize that this can help to not
only improve the efficiency of the task but also to reduce
human effort, and we plan to explore this in future work.

2We were unable to perform a complete human subjects experiment
because of COVID-19 restrictions.



VIII. CONCLUSION

We proposed a two-stage clustering approach, inspired
by clickstream analysis techniques, to identify the dominant
preferences of users at different resolutions in a complex
IKEA assembly task. In future work, we would evaluate our
two-stage approach on different assembly tasks, and explore
the problem of transferring the preferences for an event in
one assembly task to a similar event in a slightly different
assembly task (e.g., different number of parts or actions).
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