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Abstract— Mobile robots have become more and more popu-
lar in our daily life. In large-scale and crowded environments,
how to navigate safely with localization precision is a critical
problem. To solve this problem, we proposed a curiosity-based
framework that can find an effective path with the consideration
of human comfort, localization uncertainty, crowds, and the
cost-to-go to the target. Three parts are involved in the proposed
framework: the distance assessment module, the curiosity gain
of the information-rich area, and the curiosity negative gain of
crowded areas. The curiosity gain of the information-rich area
was proposed to provoke the robot to approach localization
referenced landmarks. To guarantee human comfort while co-
existing with robots, we propose curiosity gain of the spacious
area to bypass the crowd and maintain an appropriate distance
between robots and humans. The evaluation is conducted in an
unstructured environment. The results show that our method
can find a feasible path, which can consider the localization
uncertainty while simultaneously avoiding the crowded area.

I. INTRODUCTION

In the past few years, with the rapid development of
mobile robots, service robot driving in the large-scale and
human-robot coexistence environment has attracted growing
attention [1]. Therefore, how to generate a feasible trajectory
in such environments becomes an essential problem for
service robots [2].

In this paper, we focus on three aspects of the problem
including collision risk and human comfort, crowds, and
localization uncertainty. In terms of completing navigation
tasks quickly and safely, it is important to endow service
robots with fundamental navigation capabilities that meet
both collision-free and safe objectives [3]. In our curiosity-
based framework, curiosity is defined as the unsupervised
act of moving through the areas which contain landmarks or
few humans based on the robots’ current condition. Different
from the curiosity-based path planner proposed by Zhang
et.al [4], which guides robot only to learn environmental
information of obstacles, our proposed method can seek a
feasible path considering both low localization uncertainty
and human-comfort behavior. We set different gains to in-
spire the "curiosity" in terms of the robot’s current condition
and propel the path planning. Considering the condition of
human dense, robot navigation should be effective to avoid
driving into the crowded area, which may cause the "freezing
robot problem" [5], and have an adverse effect on human
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Fig. 1. Illustration of the proposed method. Our method with curiosity gain
of information-rich area ($) and curiosity negative gain of crowded area
(δ) is able to generate a human-friendly path (red) that can simultaneously
avoid crowds and approach landmarks, which makes humans comfortable
and minimize state estimation uncertainty. Besides, the method with the
curiosity gain $ (green) can approach landmarks area while it leads to
a high collision risk with humans. The original without these curiosity
gains enter both crowded and landmarks deficient areas, resulting in large
localization uncertainty and comfort reduction. The smaller the ellipse is,
the more accurate the robot localization is. Hi presents humans. Gi presents
humans who engage in conversation in a group.

comfort simultaneously. In other words, crowded areas have
a curiosity negative gain to prevent robots from navigating
in such areas. Besides, the operating scope of serve robots
may be relatively large, like airports. In such environments,
state estimation may not be accurate because of the lack
of landmarks and measurement noise [6]. Therefore, robots
need to be curious about the information-rich area and then
generate the path across these areas to reduce the localization
uncertainty. To solve such problems, we present an inte-
grated, curiosity-based approach for mobile robot navigation.
This approach can both avoid crowds and consider the
localization uncertainty in dynamic environments.

II. PROBLEM FORMULATION

The target of driving the robot in a crowded environment
is to find a feasible path bypassing the crowd and reducing
the localization uncertainty. We use M to represent the map
of the environment created by the robot. Oobs(t) represents
the un-modeled obstacles, which includes humans Oh(t)
and lifeless obstacles Oso(t). These obstacles are newly
introduced which are not in M. Ofree(t) represents the free
space in the map, which excludes the modeled obstacles
and un-modeled obstacles (humans). Omark represents the
landmark space in the map. The non-linear motion model of



Fig. 2. System diagram of the curiosity-based path planner. Evaluation Module calculates the cost of the multiple trajectories generated by the Trajectory
Generator, and the trajectory with the minimum cost is considered the optimum one.

the robot is depicted as:

x(t+ 1) = f(x(t), u(t),mt), mt ∼ N (0,Mt), (1)

x(t) ∈ χ is the valid robot state at time t. χ is the state
space. u(t) ∈ U is the control vector in the control space
U . mt is the motion noise with mean 0 and variance Mt.
The measurement of the robot at time t is z(t) ∈ Z. Z
is the observation set that contains the whole observation
information of the robot. The formula of z(t) is as follow

z(t) = g(x(t), nt), nt ∼ N (0, Nt). (2)

nt is the measurement noise based on Gaussian distribution
with variance Nt. During navigation process, the path plan-
ning is repeated at each time step ∆t. Qj : {q1j , q2j , ..., qij}
represents nontrivial trajectories generated in jth time step.
qij : {[xj(1), uj(1), zj(1)]T , ..., [xj(n), uj(n), zj(n)]T } con-
tains a number of states, control inputs and observations. n
is the index of state along the path. The best path from a set
of nontrivial trajectories in jth time step can be formulated
by

Qopt = min L∗(qij ,O)
s.t. O ∈ Omark

qij ∈ Qj
qij ∈ Ofree(t), ∀t ∈ [t, t+ ∆t],

(3)

where O represents landmarks in the environment. L∗ is
the objective function to find the best path from a set of
nontrivial trajectories.

The curiosity-based function L∗ is expressed as

L∗(qij ,O) =

{
L(qij) `(qij) > σ
L(qij) + wς−1(qij ,O) `(qij) ≤ σ.

(4)

` is the evaluation of localization uncertainty and σ is the
location threshold. When `(qij) is higher than a given thresh-
old, the robot is regarded as localization fails. ς represents the
function of curiosity gain $, which is positively correlated
with the curiosity in the information-rich area. When the
localization uncertainty increases, a higher value of ς is got-
ten. This means that the robot becomes more curious about
the information-rich area. w is the weight of the curiosity
gain $. L is the social-aware cost function. It consists of
the distance assessment module, curiosity negative gain δ,
human comfort, and collision risk. When the robot works
in increasingly crowded environments, the curiosity negative
gain of the crowded areas will increase. In such conditions,
the curiosity of crowded areas is lower than the spacious
area. Therefore, the robot will be attracted by the spacious
area to bypass the crowds. The formula of L is:

L(qij) = w1

n∏
i=1

C(qij ,Oh)+w2

n∏
i=1

H(qij ,Oh)+w3

n∑
i=1

D(qij , g),

(5)
where D is the distance assessment module, which is similar
to the tradition method [7]. H is gaussian process-based
model considering human comfort and collision risk, which
is similar to the [8]. C represents curiosity negative gain δ.

III. METHODOLOGY

In this study, we combine the curiosity-based function with
the systematic sampling-based planner to find the feasible
trajectory. The diagram of the system for trajectory genera-
tion and assessment in the planning step is illustrated in Fig.
2. First, the Trajectory Generator accounts for generating a
series of path candidates from the robot’s current position to



Algorithm 1: Trajectory Generation
Input: Map M, Goal g
Output: Trajectory candidates Qj

1 g = read(),Qj = ∅;
2 Omark = load(),M = load();
3 Tree← InitializeTree();
4 while t < ∆t do
5 qrand ← Sampling(M);
6 qnear ← Nearest(qrand, T ree);
7 [qnew, τ ]← Steer(qrand, qnew);
8 Tree = Extend(qnear, qrand);
9 if ObstacleFree(qnew) then

10 Tree.add(qnear, τ);

11 qneighbor ← FindNearNeighbor(Tree, qnew);
12 Tree← Rewire(qneighbor, qnew, T ree);

13 Qj ← FindPathCandidates(Tree);

the next position with the sampling-based planning scheme.
Second, we calculate the localization uncertainty of the
current robot position. If the localization uncertainty of the
robot is higher than the threshold, the curiosity gain in the
information-rich area will be introduced in the Evaluation
Module and the trajectory pass through this area will be
rewarded and vice versa. Third, the Evaluation Module is
leveraged for the best path with minimum cost.

The workflow of Trajectory Generator which is similar
to [9] can be seen in Alg. 1. Sampling(·) is used to generate
the random point qrand in the Ofree. Nearest(·) is to
search Tree for finding the nearest point qnear to qrand.
Steer(·) extends Tree from qnear to qrand with path τ con-
sidering the kinematic constraint of robots. qnew represents
the end of the path τ . qnear is the neighbor point of the
qnew. FindNearNeighbor(·) is the function to reselect the
neighbor point of the qnew on the Tree. Rewire(·) is the
rewiring process of Tree to reduce redundant length. These
processes is repeated and the Tree continuous updates dur-
ing each time step ∆t. When time runs out, trajectories can-
didates on Tree for robot navigation are generated through
FindPathCandidates(·). FindPathCandidates(·) is the
function to select the trajectories that are collision free and
conform to the robot motion model as candidates.

The procedure of effective path generation based on Eval-
uation Module is shown in Alg. 2. During the navigation
process, the robot updates its observation (see lines from 3 to
5 in Alg. 2). In addition, real-time constraints of Evaluation
Module, which contain curiosity gain $, collision risk,
and human comfort, curiosity negative gain δ, and distance
assessment module are considered to find the best trajectory
from a set of candidates (see lines from 6 to 23 in Alg.
2). Different from the artificial potential field-based methods
[10], which may lead to local minima and computationally
heavy, the collision risk and curiosity-based components in
our method are based on a probability model.

Algorithm 2: Optimal Trajectory Generation
Input: Trajectory candidates Qj , Current state xc
Output: Best path from a set of candidates Qopt

1 Humans Oh, Landmark Omark, Un-modeled Obs O;
2 while g not reached do
3 Observe(Omark, Oobs);
4 Delete unreachable trajectories(Qj , xc, t);
5 predict Oh at time t,...,t+N ∗∆t;
6 ` = UncertyCal(xc);
7 if ` > σ then
8 IntroCuriosityGain P$ = ς−1(qij ,Omark);
9 else

10 P$=0;

11 for j < Number of candidates do
12 for i < size(Qj) do
13 Collision & Human PRisk = H(qij ,Oh);
14 DistanceAssessment PDis = D(qij , g);
15 IntroCurNegGain Pδ = C(Oh, qij);
16 Qcost = CostCal(PRisk, PDis, Pδ , P$);
17 i++;

18 j++;

19 Qopt ← Min(Qcost);
20 if Qopt = ∅ then
21 break;
22 else
23 move along Qopt for one step;

A. Curiosity gain of information-rich areas

The curiosity gain $ is a probabilistic model which
is designed to reduce the localization uncertainty of the
robot when driving in dynamic environments. The higher
the probability, the more curious the robot is about the
area. Curiosity gain $ contains three parts: collision region,
curiosity region, and overlap region.

1) Collision Region: Landmark often refers to the known
obstacles in the map, which can be used for robot local-
ization. The collision region is the area where the robot
would collide with the landmarks. The collision region of the
landmark is the inflation of the landmark. The inflation radius
is the robot’s inscribed radius. The probability of curiosity
gain $ in this area is zero, which presents this area as not
attractive to robots.

2) Curiosity Region: The curiosity region is the expansion
of the landmarks, whose inflation radius is according to the
laser range. In such an area, the robot has a high probability
observe the information of the landmark to locate. The
curiosity gain $ in this area corresponds to the information
content observed by the robot. Hence, it decreases from the
inside that is close to the landmark to the outside.

3) Overlap Region: In a crowded area, humans may walk
around or stay in the curiosity region. The observation in the
human body will introduce localization error, which leads to
the failure of the robot localization and even collides with



Fig. 3. Experimental results of the simulation environment. (a) Simulation environment and navigation paths.(b)-(d) Distances between humans and robot.
(e) Uncertainty of paths.

humans. Therefore, we set the overlap region according to
the area occupied by humans. The probability of curiosity
gain $ in this area will be reduced.

B. Curiosity negative gain of crowded areas

We proposed curiosity negative gain δ which is presented
by a two-dimensional Gaussian mixture model to describe
the crowded area in the dynamic case at a certain moment.
The mean of this model is the center of the crowd and
its covariances are depend on the humans at the crowd
boundary. The value of curiosity negative gain δ is inversely
proportional to the distance between the robot and the center
of the crowd. At each time step, curiosity negative gain of
crowded areas will be calculated based on the change in the
environment to update the trajectory.

IV. SIMULATIONS AND RESULTS

We conduct the simulation by using the stage simulator in
Robot Operation System (ROS). 1 The robot in the simulation
environment is mounted with a laser sensor. Besides, we
use Adaptive Monte Carlo Localization (AMCL) [11] for
localization. The simulation scenario is shown in Fig. 3(a),
which is a large-scale and crowded environment with 27
humans. Humans move in different directions and speeds
within the environment. The velocity of different humans is
set to be a random value in a range of [0, 1] (m/s). The
global information of humans moving in the environment
is available to the robot during online planning. There are
few landmarks in the central area of the upper part of
the scenario. Our method and the compared methods are
shown in different colors in Fig. 3. The red results (path

1Video demonstration is available at https://youtu.be/O2JJWS2Vpck

in Fig. 3(a) and curves in Fig. 3(b), (e)) are generated by
our method, which considers both the curiosity gain $ and
curiosity negative gain δ. The green results are generated by
the method only considering the curiosity gain $, and the
blue results are generated by Risk-RRT [7], which does not
consider the curiosity gain. The other two methods drive the
robot into a crowded area where it is unable to keep a proper
distance from humans.

Intuitively, compared with the other two methods, our
proposed method can generate the trajectory closer to the
landmark and bypass the crowded area more smoothly. The
other two methods without considering the curiosity negative
gain δ drive the robot into the crowd, which has to make a
detour for avoiding humans. Besides, the distances between
the nearest humans and the robot in crowded areas are
shorter than that in the spacious area. Fig. 3(b)-(d) show
the distances between the humans and robot. D=1.5m is
the defined threshold [12], below which the human will feel
uncomfortable. To display results clearly, we show the three
minimum distances (D) or distances (D) less than or equal
to the threshold. The distances in our method are always
higher than the threshold. However, this indicator cannot be
satisfied by other methods. Such results demonstrate that our
method enables the robot to maintain an appropriate distance
from humans without affecting human comfort. In addition,
in Fig. 3(e), both the red curve and green curve, which both
consider the uncertainty effect have lower pose estimation
uncertainty than others.

The experiment is repeated 10 times. PE, MD, TD, and
NT are used for evaluations comprehensively. PE is the pose
estimate uncertainty. MD is the minimum distance between
humans and the robot while completing the navigation task.
TD is the ratio of the duration (when D is smaller than the



TABLE I
STATISTICS OF THE THREE METHODS IN SIMULATION ENVIRONMENTS.

PE NT TD MD
Curiosity gain $ & δ 0.096 0 0 2.065

Curiosity gain $ 0.119 3.7 0.238 0.509
Risk-RRT 1.315 4.2 0.266 0.385

threshold) to the total time of the robot moving. NT is the
average number of times that the robot’s minimum distance
is lower than the given threshold. As shown in Table I, the
proposed method has the minimums value of NT and TD,
and it also has a maximum value of MD. This indicates that
the proposed method can maintain an appropriate distance
from humans. Besides, it can be seen that the proposed
method has the minimum PE, which indicates that our
method has the lowest localization uncertainty among the
other methods. The simulation demonstrates the effectiveness
of our curiosity-based method.

V. CONCLUSIONS AND FUTURE WORK

The curiosity-based method can plan a collision-free path
with the consideration of the robot state estimation and the
distribution of the crowd. Simulations are carried out to
demonstrate the advantage of the proposed method. In the
future, we will further study the possibility of applying the
proposed method to more complex scenarios.
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