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Abstract— While machines and robots must interact with
humans, providing them with social skills has been a largely
overlooked topic. This is mostly a consequence of the fact
that tasks such as navigation, command following, and even
game playing are well-defined, while social reasoning still mostly
remains a pre-theoretic problem. We demonstrate how social
interactions can be effectively incorporated into MDPs by
reasoning recursively about the goals of other agents. In essence,
our method extends the reward function to include a combina-
tion of physical (something agents want to accomplish in the
configuration space, a traditional MDP) and social intentions
(something agents want to accomplish relative to the goals
of other agents). Our S-MDPs (social MDPs) allow specifying
reward functions in terms of the estimated reward functions of
other agents, modeling interactions such as helping or hindering
another agent (by maximizing or minimizing the other agent’s
reward) while balancing this with the actual physical goals of
each agent. Our formulation allows for an arbitrary function of
another agent’s estimated reward structure and physical goals,
enabling more complex behaviors such as politely hindering
another agent or aggressively helping them. Extending S-MDPs
in the same manner as I-POMDPs extension would enable
interactions such as convincing another agent that something
is true. To what extent the S-MDPs presented here and their
potential S-POMDPs variant account for all possible social
interactions is unknown, but having a precise mathematical
model to guide questions about social interactions both has
practical value (we demonstrate how to make zero-shot social
inferences and one could imagine chatbots and robots guided
by S-MDPs) and theoretical value by bringing the tools of MDP
that have so successfully organized research around navigation
to hopefully shed light on what social interactions really are
given their extreme importance to human well-being and human
civilization.

I. INTRODUCTION

Progress on modeling social interactions and giving ma-
chines social goals, such as being particularly nice to a
user, is significantly hampered by the lack of theoretical
models which characterize what social interactions are. Great
practical progress was made in robot navigation and later in
sensing with the introduction of MDPs [1] and POMDPs
[2]. Defining the problem clearly allowed us as a field to
understand what we can model and how to do so. Until we
take this same step for social interactions they will remain
on shaky ground and despite their importance to virtually
every interaction humans engage in they will remain largely
off-limits to machines.

We introduce an extension of MDPs, which we term Social
MDPs or S-MDPs. To do so, we make several assumptions.
First, that agents have physical goals and social intentions, and

∗ Equal contribution
1Computer Science and AI Laboratory, MIT
{tejwanir,ylkuo,tshu,boris,abarbu,}@mit.edu

their overall reward structure is some arbitrary combination
of the two, potentially accompanied by other terms. Physical
goals are what MDPs can already express, some of function of
points in a configuration configuration space. Social intentions
are a function of the estimate of the reward structure of
another agent. For example, a reward that hinders another
agent is some negative function of the estimated reward of that
agent. Complicating matters is the fact that social rewards like
beliefs can be recursive, an agent may want to help another
agent help them. To model this, S-MDPs are recursive up to
some depth, much like interactive POMDPs [3] (I-POMDPs).
Unlike I-POMDPs, S-MDPs are not recursive in terms of
agent’s beliefs about the state of the world. Instead, S-MDPs
are recursive in terms of the rewards of the agents. This makes
S-MDPs and I-POMDPs orthogonal and complementary. S-
MDPs are specifically formulated to not interfere with the
standard extension from MDPs to POMDPs, making partial
observability trivial to include. While we do not develop
a joint SI-POMDP here, this is a straightforward extension
which would cover far more of the space of social interactions,
although one that is computationally challenging.

Our contributions are:
1) Formulating Social MDPs where an agent’s reward

function is an arbitrary function of the recursive estimate
of another agent’s reward and a physical goal.

2) An implementation where that function is a linear
transformation, which captures notions of helping and
hindering

3) Experimental validation of zero-shot social understand-
ing where agents that have never been asked to help or
hinder do so.

The space of social interactions which can be captured
by S-MDPs is unknown, largely because the space of
possible social interactions is ill-defined at present with many
proposed mutually-incompatible and incomplete taxonomies.
In the future, we intend to validate S-MDPs with human
subjects experiments to characterize which interactions are
representable as S-MDPs, S-POMDPs, and SI-POMDPs.

II. RELATED WORK

A. Inferring Social Interactions

Social interactions in multi-agent setting has been explored
in previous work in the form of estimating social goal of the
agent using theory based models for goal attribution [4–8],
Bayesian inverse planning to infer agent’s goal given the
observations of their behavior [9, 10] and co-ordination for
human-AI collaboration [11, 10, 12, 13].

Social exchange, built upon the Piaget’s Theory of Social
Exchanges [14], was proposed as a value for performing a
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service or the satisfaction value for receiving it. It used hybrid
BDI-POMDP agent models defined over the BDI (Beliefs,
Desires, Intentions) with plans derived from POMDP using
social exchange strategies [15, 16].

Social interactions has also been explored in videos of
the group activities where people engage in social activities
such as walking, waving, hugging, hand shaking [17–19].
These videos demonstrate the social relationship between
people (agents) and the snippets are further used to predict
the overall relationship. In contrast, we focus on recursively
modelling the agents to estimate each others’ social intentions
at different levels of reasoning.

B. Simulating Agent Trajectories for Social Interactions

The simulation of agent trajectories for social interaction
task was first demonstrated by [20] through the set of
animations involving the movements of geometrical figures.
They conducted human experiments to investigate their
perception of the social interaction between the geometrical
figures. Simulating agent behaviors in physics engine had
been conducted by collecting and validating the datasets
on social perception tasks in fully observable environments
[21, 22] and in partially observable environments [23, 11].

These frameworks focused on (a) each agent having either
a physical goal or a social goal, and (b) on the entire
social relationship between the two agents. However, in our
framework we consider each agent to have their physical
goal as well as a social intention towards the other agent
rather than the social relationship as a whole. Both the goal
and social intention are recursively estimated by each agent
at each time step as they take their corresponding actions
towards the goal.

C. Interactive POMDPs

Interactive POMDP frameworks [24–26] were proposed
as an extension to POMDP in which an agent attempts to
model the other agent in incorporating beliefs about the
other agent in terms of preferences, capabilities, and beliefs
into nested levels (interactive beliefs). The interactive beliefs
were maintained over interactive states which included the
physical states and the models of other agents behaviors.
The recursive Bayesian update was used to maintain the
beliefs over time such that the solution maps the belief
states to actions. Furthermore, [27] and [24] described the
approximate solutions to I-POMDP using Interactive Particle
Filtering for descending the levels of the interactive belief
hierarchies and samples that propagates the interactive beliefs
at each level.

S-MDP takes similar recursive inference idea as I-POMDP.
But rather than inferring actions through beliefs, we estimate
the other agents’ goal and social intentions at each level and
use the estimated goal and social intentions to infer the policy
of the other agent at each level.

III. SOCIAL MDP

This section formulates the Social MDP (S-MDP) as a
two-player Markov game inspired by cognitive hierarchy

models of games [28] and nested MDP models [29–31].
The S-MDP framework consists of iterative decision making
for each agent doing l-level reasoning of other agents’ social
intentions. Each agent plans its optimal policy by assuming
that the other agent’s policy is based on lower levels of
reasoning. This results in a finitely nested MDP where at
each level the agent needs to choose policy that maximizes
its own reward with respect the policy of the other agent
conditioned on the estimated social intention. We refer this
estimated policy of the other agent as social intention policy
in this paper.

A. Assumptions

As in the typical MDP setting, the states are fully ob-
servable to both agents. Both agents have full access to the
underlying MDP except for the social intention of the other
agent. Each agent has to estimate the social intention of the
other agent while planning its own action at each time step.
While we present the S-MDP with two agents, this framework
can be extended to any number of agents.

B. S-MDP Formulation

We consider a multi-agent system in which one agent
determines its optimal policy by considering the policy of
the other agent at l levels of reasoning. At l > 0, the agent
computes its optimal policy based on the other agent’s policy
at lower levels 0, 1, ·, l− 1. At l = 0, it solves a typical MDP.
A S-MDP for an agent i at level l is defined as:

M l
i = 〈S,A, T, χij , Ri, γ〉 (1)

where
• S is a set of states in the environment where s ∈ S.
• A = Ai × Aj is the set of joint moves of all agents.
ai ∈ Ai and aj ∈ Aj are the actions for agent i and j
respectively.

• T denotes the probability distribution of going from
state s ∈ S to next state s′ ∈ S given actions of all
agents: T (s′ | s, ai, aj).

• χij represents the social intention of agent i towards
agent j and is used in reward function to define the
reward in helping/hindering the other agent j.

• Ri is the reward function for agent i that maps the state,
joint actions, and its social intentions towards the other
agent to real numbers.

• γ is a discount factor: γ ∈ (0, 1).
a) Reward: Each agent can have its own physical goal,

e.g. going to a landmark, as well as the social goals, i.e.
helping or hindering other agents. The immediate reward of a
social agent i is characterized by its social intention towards
the other agent j as follows:

Ri(s, ai, aj , χij) = r (s, ai, gi)+χij ·r(s, aj , gj)−c(ai) (2)

where r(·) is the static reward given the agent’s own physical
goal (e.g. gi and gj); c(·) is the cost for taking an action;
χij indicates the social intention towards agent j showing
how much agent i would like to help/hinder agent j. When
χij > 0, agent i tends to help; when χij < 0, agent i tends



to hinder; and χij = 0 means agent i is neutral to the other
agent j. In this setting, a social agent can maximize its reward
if it successfully helps or hinder other agents.

b) Estimating goals and social intentions: To solve an
agent’s MDPs over different levels, it needs to estimate the
other agent’s physical goal and social intentions at different
levels of reasoning. Similar to [21], the physical goal gj of
agent j is predicted by i using the Bayes’s rule:

P (gj |s1:T ) ∝
∫
χ̃ji

P (s1:T |gj , χ̃ji) ·P (gj) ·P (χji) dχ̃ji (3)

Since the agent is estimating the social intention at the same
time, the estimation of physical goal needs to marginalize over
the estimated social intention as well. The social intention
of agent i towards agent j estimated by agent k at level l
is denoted as χ̃k,lij . In the two-player setting, k can be either
agent i or j depending on which agent is making estimation.
We will describe how to update the estimate of social intention
in Section III-D. When solving agent i’s MDP at level l, this
estimated social intention is further used to compute the other
agent j’s social intention policy ψ̃i,lj : S ×Aj × χ̃iji → [0, 1],
i.e. P (aj | s, χj).

C. Planning for S-MDP

Analogous to MDP, the state-action value is the sum of
immediate reward and the expected value in the future. Since
the agent i is interacting with agent j, it needs to estimate
what actions agent j may take to compute its state-action
value. S-MDP considers the expectation over the estimated
social intention of agent j in the Q function:

Qli(s, ai, aj , χij) = R(s, ai, χij) + γ
∑
s′∈S

T (s, ai, aj , s
′)

∑
a′i

∑
a′j

∫
χ̃i
ji

Pr(χ̃iji | s, ai)ψ̃
i,l
j (s′, a′j , a

′
i, χ̃

i
ji)

Qli(s
′, a′i, a

′
j , χij) dχ̃

i
ji (4)

The l-level social intention policy ψ̃i,lj of the agent j is
predicted by i using the Q function at level l-1:

ψ̃i,lj (s, aj , ai, χji) =
exp(Ql−1j (s, ai, aj , χji)/τ)∑

ai

∑
aj

exp(Ql−1j (s, ai, aj , χji)/τ)

(5)

This is a softmax policy where τ is the temperature parameter
controlling how much the agent j follows the greedy actions.
Based on Eq. 4, in order to use agent j’s Q function at level
l-1, it requires to compute agent i’s Q function at level l-2,
and so on. This involves solving recursive MDPs at levels
0, 1, · · · , l-1.

D. Social Intention Update

[10] showed that humans can easily estimate agents’
social intention by watching agents carrying out their actions.
The confidence of such estimation increases as they observe
actions for more time steps. Taking this idea, in S-MDP, an
agent’s estimation of the other agent’s social intention at

time step t is updated based on the actions performed by the
agents:

Pr(χ̃i,tji | s
t−1, at−1i ) = βPr(χ̃i,t−1ji | st−2, at−2i )∑
at−1
j

∑
g̃t−1
j

Pr
(
at−1j | st−1, χ̃i,t−1ji , g̃t−1j

)
×T

(
st−1, at−1i , at−1j , st

)
Pr(χ̃i,tji | χ̃

i,t−1
ji , at−1j )

(6)

where β is the normalizing constant and Pr(χ̃i,tji |
χ̃i,t−1ji , at−1j ) is the Kronecker delta function δK

(
ãt−1j , at−1j

)
.

ãt−1j is i’s prediction of j’s action given the estimated social
intention χ̃i,t−1ji and at−1j is the actual action taken by j at
the time step (t− 1). The Kronecker delta function evaluates
to 1 only when the predicted action is the same as the actual
action, thereby resolving Eq. 6 to:

Pr(χ̃i,tji | s
t−1, at−1i ) = βPr(χ̃i,t−1ji | st−2, at−2i )∑

g̃t−1
j

Pr
(
at−1j | st−1, χ̃i,t−1ji , g̃t−1j

)
×T

(
st−1, at−1i , at−1j , st

) (7)

The social intention, estimated at time step t, is updated
after actions taken by both the agents at each time step.
This update is similar to the belief update in the POMDP
framework but based on the estimated social intention policy
of the other agent j.

E. Value Iteration

We use value iteration to solve S-MDP M l
i for agent i

at level l. The value function at (k + 1)-th update of value
iteration satisfies the following Bellman backup operation:

Ql,k+1
i (s, ai, aj , χij) = R(s, ai, χij) + γ

∑
s′∈S

T (s, ai, aj , s
′)

V l,ki (s′, χij)
(8)

V l,k+1
i (s, χij) = max

ai∈Ai

{ ∑
aj∈Aj

∫
χ̃i
ji

Pr(χ̃iji | s, ai)

ψ̃i,lj (s′, a′j , a
′
i, χ̃

i
ji)Q

l,k+1
i (s′, a′i, a

′
j , χij) dχ̃

i
ji

} (9)

After applying Eq. 9 iteratively, agent i’s optimal action
for level l can be obtained as:

OPT (M l
i ) = argmax

ai∈Ai

{ ∑
aj∈Aj

∫
χ̃i
ji

Pr(χ̃iji | s, ai)

ψ̃i,lj (s′, a′j , a
′
i, χ̃

i
ji)Q

l,k+1
i (s′, a′i, a

′
j , χij) dχ̃

i
ji

} (10)



(a) Red robot is initialized with social intention of χji = 1 and shares the same goal with yellow robot of reaching the flower.

(b) Red robot is initialized with social intention of χji = −1 and shares the same goal with yellow robot of reaching the flower.

(c) Red robot is initialized with social intention of χji = 0 and has a different goal than yellow robot of reaching the tree.

(d) Red robot is initialized with social intention of χji = 0.5 and has a different goal than yellow robot of reaching the tree.

(e) Red robot is initialized with social intention of χji = −0.5 and has a different goal than yellow robot of reaching the tree.
Fig. 1: Example interactions between the red robot(agent j) and yellow robot(agent i). Red robot is initialized with different

configurations of social intention towards yellow robot and physical goals.

F. Time Complexity

The time complexity of solving the S-MDP for agent i
involves the cost of predicting the social intention policy
ψ̃i,l−1j of the other agent at level l-1, which solves ψ̃j,l−2i

and so on. Same as the typical MDP, the time needed for each
iteration of the value iteration is O

(
|Ai||Aj ||S|2

)
. At each

level, the time taken to update the social intention is constant.
The number of models at each level is then bounded by a

number, |M|, where |M| is the number of social intention
χ evaluated at each level. Hence, solving the S-MDP is
equivalent to recursively solving O(|M|l) MDPs.

IV. EVALUATION

To show how the an agent can choose its behavior based
on its estimations of the other agent, we apply our S-MDP
framework to a multi-agent grid world inspired by previous
studies on social perceptions [10, 4, 32]. It is a 7×7 2D grid



Fig. 2: Agent i’s estimations of agent j’s social intentions χ̃iji at different levels of reasoning and social intentions.

Fig. 3: Agent i’s estimations of agent j’s goal g̃j at different levels of reasoning and social intentions.

consists of two agents, the yellow and red robots, and two
physical landmarks, the flower and tree. The robots can have
their physical goals (flower or tree), i.e. gi and gj to reach,
and the social intention, χij and χji to help/hinder/ignore
the other agent. The agents can move around the world by
taking actions - Left, Right, Up, Down or choose to Stay.
The agents reach their physical goal when they stay at the
adjacent blocks of the landmarks.

In addition to social intentions, similar to [10], the agent’s
reward for reaching its physical goal is based on the agent’s

geodestic distance from the goal after taking an action.
This physical reward function is parameterized by ρ and
δ that determines the scale and shape of the physical reward:
ri(s, a, gi) = max (ρ (1− distance(s, a, gi)/δ) , 0). We set
the cost c(a) of moving in the grid to 1 and staying at the
same position to 0.1. The goal parameter ρ and δ were set
to 1.25 and 5, respectively. The discount factor γ was set to
0.99. The value of social intention, χij or χji, varied between
[−1, 1] which corresponded from being most hindering to
most helpful.



In this experiment, we use S-MDP to selection actions for
the yellow agent (agent i) which has only a physical goal,
reaching the flower or tree, and χij = 0 while interacting
with the red agent (agent j). The red agent has a physical
goal, reaching the tree, and social intention χji. At every
time step, the yellow agent estimates the social intention and
the goal of the red agent at different levels of reasoning to
predict its next action. In this evaluation, we run S-MDP in
different scenarios by setting the groundtruth χji to different
values, -1, -0.5, 0, 0.5, and 1.

Figure 1 shows the sample interactions between the two
agents at different scale of social intention χji. When the
red agent aggressively helps (χji = 1) the yellow, it goes
directly to the yellow and stay together with the red. When
the red agent politely hinders (χji = −0.5) the yellow, it goes
to block the yellow’s way to make the yellow inconvenient
to reach the flower and then goes to its own goal. While
χji = 0, both agents go their their respective goals directly.

We show the yellow agent’s estimation of the red’s social
intention χ̃iji and physical goal g̃j at different levels of
reasoning and time steps in Figure 2 and 3. Each column is
a scenario with a different groundtruth χji. Each row shows
the estimation when running S-MDP at level 0, 1, and 2. As
the levels of reasoning increases, we find the estimated social
intention and physical goal converges to the groundtruth more
quickly in the aggressively-help/hinder scenarios. More levels
also help the agent in the politely-help/hinder scenarios tell
apart from the χji = 1 or χji = −1 hypothesis (see the
difference between the blue and olive lines in χji = −1 and
the difference between the red and orange lines in χji = 1
columns). The more accurate social intention estimation at
earlier time steps also reflects in the amount of reward the
yellow agent can collect. Figure 4 compares the cumulative
reward at each time step for the yellow at different levels of
reasoning and for the social intention χji = 1.

Fig. 4: Cumulative reward (the sum of all rewards received
so far) of the agent i at different levels of reasoning and for
the social intention χji = 1

V. CONCLUSION & FUTURE WORK

We presented S-MDPs to efficiently incorporate social
interactions into MDP framework. We achieve this by (1)
recursively estimating the social intentions and the goals of
other agents and (2) extending the reward function to include
the estimates of other agents (by maximizing or minimizing
the estimated reward of the other agent). S-MDPs enable zero-
shot social inference of other agents. An initial experiment in
a multi-agent 2D grid world showed that such multiple levels
of reasoning improves the estimations of the other agent’s
social intention and physical goal as well as the accumulated
rewards. This type of social agents need extra computations as
it solves multiple MDPs recursively. The increased complexity
is bounded by the levels of reasoning needed to model social
interactions. In the future, we plan to investigate how the
learned policies changes in different levels/scenarios and
validate with human experiment to understand what number
of levels of recursive reasoning needed and what features
are useful to model social interactions with S-MDPs. While
we only present S-MDP here modeling the recursive social
rewards, it is possible to extend it with I-POMDP to cover
more space of social interactions to further enable rich human-
robot interactions.
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