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Abstract— Human infants intuitively make rich inferences
about the goals, preferences, and actions of other agents in
the environment. To achieve human-like common sense about
everyday life, artificial intelligence and machine learning sys-
tems must also understand and reason about such intentionality
in other agents. Directly informed by research on infant
cognition, we present the Baby Intuitions Benchmark (BIB),
which challenges machines to achieve generalizable, common-
sense reasoning about other agents like human infants do. We
show that while deep-learning-based agency reasoning models
fail on BIB, 11-month old infants tested in a pilot validation
succeed. This interdisciplinary investigation both suggests a
critical gap in machines’ common-sense reasoning and also
provides new insight into the abstractness and generalizability
of infants’ knowledge.

I. INTRODUCTION

Humans have a rich capacity to infer the underlying inten-
tions of others by observing their actions. For example, when
we watch the simple animations from Heider & Simmel’s
(1944) [21] seminal study (see video1), we attribute goals and
dispositions to simple 2D figures moving around a flat world.
Using behavioral experiments presenting both simple and
complex visual displays, developmental cognitive scientists
have found that even young infants also make rich inferences
about the intentions underlying other agents’ actions. For
example, infants expect agents: to have object-based goals
[19, 30, 48, 51, 52, 53]; to have goals that reflect preferences
[37, 26, 10]; to engage in instrumental actions to bring about
goals [11, 14, 23, 20, 40, 53]; and to act efficiently towards
goals [19, 17, 18, 28, 29, 12].

Artificial Intelligence (AI) systems, in contrast, are much
more limited compared even to human infants in their
understanding of other agents. AI systems typically aim to
predict actions of interest (e.g., churn, clicks, likes, etc.)
rather than to learn about the goals and preferences that
underlie those actions. Addressing this difference is crucial
if research in machine learning and artificial intelligence
aims to approximate the flexibility of human common-sense
reasoning about agents [27].

Common-sense reasoning about agents has thus recently
been the focus of AI research relying on diverse approaches:
inverse reinforcement learning [32, 1, 56]; Bayesian models
[50, 8, 6, 7, 24], game theoretic models [see survey: 2];
and learning-based neural network models [34, 35]. Despite
the increasing interest in this research area, such models
have not been evaluated or compared using a comprehensive
benchmark that captures early emerging human knowledge

a New York University
1https://www.youtube.com/watch?v=VTNmLt7QX8E

about agents.2. In this paper, we thus present the Baby
Intuitions Benchmark (BIB) to evaluate machines’ reasoning
about agents. By presenting a canonical split between train-
ing and evaluation sets, BIB tests for flexible, generalizable
common-sense reasoning. BIB adapts experimental stimuli
from research in developmental cognitive science that has
captured the abstract nature of infants’ knowledge [3, 9].
Moreover, BIB adopts a “violation of expectation” (VOE)
paradigm (similar to Riochet et al. (2018) [38] and Smith et
al. (2019) [46] ), commonly used in behavioral research with
infants, which both makes its direct validation with infants
possible and also makes its results interpretable in terms
of human performance. Finally, we provide pilot validation
data on BIB with human infants. BIB thus serves as a key
step in bridging machines’ impoverished understanding of
the intentions that drive other agents’ actions with humans’
rich understanding.

II. BABY INTUITIONS BENCHMARK

BIB presents a set of agency-reasoning tasks for AI
based on findings from developmental cognitive science
and adopting its VOE paradigm. We focus on the following
five questions: 1) can an AI system represent an agent
as having a particular object-based goal? 2) can it bind
specific preferences for goal objects to specific agents? 3)
can it understand that there may be obstacles that restrict an
agent’s actions and that an agent may move to a previously
nonpreferred object when their preferred object becomes
inaccessible? 4) can it represent an agent’s sequence of
actions as instrumental, directed towards a higher-order goal
object? and 5) can it learn that an agent acts efficiently
towards a goal object?

Following the rationale of the VOE paradigm, each of the
BIB tasks consists of a familiarization phase and a test phase.
The familiarization phase includes a succession of eight trials
that introduce the main elements of the visual displays used
in the test phase. Familiarization allows the observer to form
expectations about the future behavior of those elements. The
test phase includes an expected and unexpected outcome
based on what was observed during familiarization. The
expected outcome is typically perceptually dissimilar to the
events in the familiarization while the unexpected outcome is

2AGENT [43], a benchmark developed contemporaneously to the one
presented here, is inspired by studies with infants and has been validated
with behavioral data from adults. Moreover, it challenges machines to reason
about the underlying intentions of agents as opposed to merely their actions.
We see AGENT as complementary to our efforts
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typically perceptually similar. So, in order for the outcome
to be unexpected, it must be so at the conceptual, rather
than perceptual, level. When the VOE paradigm is used with
infants, their looking time to each event is measured; longer
looking time is interpreted as reflecting an infant’s surprise
by an outcome that ”violates her expectations” [5, 49, 33]3.

BIB’s stimuli include a set of animated videos of a ”grid-
world” environment, which is presented from an overhead
perspective and is populated with simple shapes that take on
different roles (e.g. “agents,” “objects,” “tools”). We assume
the the environment is fully observable to the agent (i.e., the
agent can see over the walls) and the viewer. We chose this
type of environment as particularly suitable for testing AIs
[e.g., 7, 34] because it allows for procedural generation of a
large number of episodes, and the simple visuals focus the
problem on reasoning about agents.

(a)  Familiarization (8 trials)

(b)  Test: Expected

(c)  Test: Unexpected

Fig. 1: BIB’s Preference Task. Inspired by the Woodward et al.’s [51]
original study with infants (left), our version of the task (right) displays
an agent moving to the same object in approximately the same location in
a grid world across eight familiarization trials. In the expected test trial, the
agent moves to the preferred object in a new location, and in the unexpected
test trial, the agent moves to the nonpreferred object in a familiar location.

A. Preference Task.

Infants attribute object-based (rather than location-based)
preferences and goals to agents [19, 30, 48, 51, 52, 53].
As illustrated in Figure 1 (left), Woodward’s [51] seminal
study showed that when 5- and 9-month-old infants saw a
hand repeatedly reaching to a ball on the left over a bear
on the right, they then looked longer when the hand reached
to the left for the bear, even though the direction of the
reach was more similar in that event to the events in the
previous trials. For BIB, the familiarization presents an agent

3It should be noted, however, that interpreting infants’ looking behavior
as measured by VOE has been a matter of debates among developmental
scientists ( [13, 31]) as infants might sometime look longer to the stimulus
both because they detect a conceptual violation in it, but also because they
prefer to look at perceptually more familiar events (e.g. [41])

repeatedly moving towards a specific object in a world with
two objects. The agent’s starting position is fixed across
trials, and the locations of the objects are correlated with their
identities such that the preferred object and nonpreferred
object appear in generally the same location across trials.
The test uses two object locations that had been used during
one familiarization trial, but the identity of the objects at
those locations has been switched. There are two possible
outcomes: the agent moves to the object that had been
their goal during the familiarization (expected); or, the agent
moves to the nonpreferred object (unexpected). The model
is successful if it expects the agent to go to the preferred
object in a different location (see Figure 1 (right)).

B. Multi-Agent Task.

Infants attribute specific preferences to specific agents
[10, 22, 26, 37]. The familiarization presents an agent
consistently choosing one object over the other, but objects
appear at widely varying locations in the grid world . The test
includes four possible outcomes: the same agent approaches
the preferred object (expected); a new agent approaches
the object preferred by the first agent (no expectation); the
same agent approaches the nonpreferred object (unexpected);
or the new agent approaches the nonpreferred object (no
expectation). The model is successful if it has weak or no
expectations about the preferences of the new agent (see
Figure 2).

(a) Familiarization (8 trials) (b) Test: No Expectation (c) Test: Unexpected

Fig. 2: Evaluation of whether machines can bind specific goals to specific
agents. One agent shoes a consistent preference for one of the two objects
during familiarization. This should lead to a strong expectation about that
agent’s preference at test but should lead to no or weak expectations about
another agent.

C. Inaccessible Goal Task

. Infants’ expectations about what object an agent is likely
to approach may depend on the accessibility of that object
within a particular environment, e.g., if it is blocked by a
physical barrier [42]. The familiarization presents an agent
consistently choosing one object over the other, and objects
appear at widely varying locations in the grid world. The
test presents two new object locations and two possible
outcomes: the preferred object is now inaccessible, blocked
on all sides by fixed, black barriers, and the agent moves to
the nonpreferred object (expected); or, both of the objects
remain accessible, and the agent moves to the nonpreferred
object (unexpected). The model is successful if it expects
the agent to move to the nonpreferred object only when the
preferred object is inaccessible (see Figure 3).
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(a) Familiarization (8 trials) (b) Test: Expected (c) Test: Unexpected

Fig. 3: Evaluation of whether machines can understand that obstacles restrict
actions and that an agent might move to a nonpreferred object when their
preferred object is inaccessible.

D. Instrumental Action Task.

Infants represent an agent’s sequence of actions as instru-
mental to achieving a higher-order goal [11, 14, 23, 20, 40,
47, 53]. The familiarization includes five main elements: an
agent; a goal object; a key; a lock; and a green removable
barrier. The green barrier initially restricts the agent’s access
to the object. The agent removes the barrier by collecting
and then inserting the key into the lock. The agent then
moves to the object. The test phase presents three different
scenarios for a total of six different outcomes. In the scenario
with no green barrier: the agent moves directly to the object
(expected); or to the key (unexpected). In the scenario with
an inconsequential green barrier: the agent moves directly
to the object (expected); or to the key (unexpected). In the
scenario with variability in the presence/absence of the green
barrier: the barrier blocks the agent’s access to the object, and
the agent moves to the key (expected); or, the barrier does not
block the object and the agent goes to the key (unexpected).
The model is successful if it expects the agent to go to the
key only when the green removable barrier is blocking that
object (see Figure 4).

E. Efficiency Task.

Infants expect agents to move efficiently to their goals
and to modify their paths to goals based on the presence
or absence of obstacles [4, 19, 17, 18, 29, 28, 12].In a
seminal study by Gergely et al. [19], for example, 12-month-
old infants repeatedly saw a small circle jumping over an
obstacle to get to a big circle (see Figure 5 left). For BIB,
the familiarization includes two different scenarios: a rational
agent consistently moves along an efficient path to its goal
object around a fixed black barrier in the gird world; or,
an irrational agent moves along these same paths as the
rational agent, but there is no barrier in the way. The test
includes two possible scenarios. One scenario shows only the
rational agent, and it presents one of the familiarization trials
but with the barrier between the agent and the goal object
removed. The agent either moves along an efficient path to
its goal (expected) or the agent moves along the exact same,
but now inefficient, path that it had during familiarization
(path control) or along a path that is inefficient but takes the
same amount of time as the efficient path (in this latter case,
the goal object starts off closer to the agent). The second
scenario shows either the rational or irrational agent taking
an inefficient path towards its goal. This outcome should be

Familiarization (8 trials) Test: Expected Test: Unexpected

(a) No barriers
Familiarization (8 trials) Test: Expected Test: Unexpected

(b) Inconsequential barriers
Familiarization (8 trials) Test: Expected Test: Unexpected

(c) Blocking barriers

Fig. 4: The three types of test trials evaluate machines’ understanding of an
agent’s instrumental actions towards a higher-order goal. The goal is initially
inaccessible (blocked by a green removable barrier). During familiarization,
the agent removes the barrier by retrieving the key (triangle) and inserting
it into the lock. At test, it is expected that the agent should move directly
to the goal when it is accessible.

unexpected in the case of the rational agent, but should yield
no expectation in the case of the irrational agent. The model
is successful if it expects only a rational agent to modify its
path based on the presence or absence of barriers and move
efficiently to its goal (5 right).

III. BASELINE MODELS’ PERFORMANCE ON BIB

A. Background Training

We provide a set of background training tasks for the
models to learn about the grid worlds, their elements, and
the structure of the trials. Importantly, when participating in
VOE study, infants can make meaningful inferences about
novel stimuli/environments with only a relatively brief famil-
iarization phase. We include tens of thousands of background
episodes as a generous stand-in for this type of in-lab
familiarization so AI systems are not surprised merely by
the various elements and dynamics used in the evaluation.

The episodes in the background training are structured
similarly to those in the evaluation, although the familiar-
ization and test trials in the background training are drawn
from the same distribution within each episode. Similar to
IntPhys [38] and ADEPT [46], we only provide the expected
outcomes during training. There are four training tasks (see
Figure 6): Single Object Task; No-Navigation Preference
Task; No-Preference No-Navigation Multi-Agent Task; and
Agent-Blocked Instrumental Action Task.
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TABLE I: Performance of the baseline models on BIB. The scores quantify pairwise VOE judgements.

BIB AGENCY TASK BC-MLP BC-RNN VIDEO-RNN

PREFERENCE 26.3 48.3 47.6
MULTI-AGENT 48.7 48.2 50.3
INACCESSIBLE GOAL 53.1 46.6 66.0

EFFICIENCY: PATH CONTROL 96.0 95.8 99.8
EFFICIENCY: TIME CONTROL 99.1 99.1 99.9
EFFICIENCY: IRRATIONAL AGENT 73.4 48.8 50.0

EFFICIENT ACTION AVERAGE 85.5 73.1 74.9

INSTRUMENTAL: NO BARRIER 98.8 98.8 99.7
INSTRUMENTAL: INCONSEQUENTIAL BARRIER 56.7 78.2 76.7
INSTRUMENTAL: BLOCKING BARRIER 48.2 55.9 58.2

INSTRUMENTAL ACTION AVERAGE 67.9 77.6 78.2

(a)  Familiarization (8 trials)

(b)  Test: Expected

(c)  Test: Unxpected

Fig. 5: Inspired by Gergely et al. (1995) [19] (left) we ask whether machines
expect that agents move efficiently towards goal objects. At test, the agent
moves along one of the same paths they moved along during familiarization,
but unlike familiarization, there is no barrier between the agent and the
object. So, this inefficient action is unexpected.

To be successful at the evaluations, models must acquire
or enrich their representations of agents for flexible and
systematic generalization. For example, models have to com-
bine acquired knowledge of navigation (Single Object Task)
and agent preferences (No-Navigation Preference Task) to be
successful at the Preference Task, which evaluates the under-
lying preferences guiding agents’ goal-directed navigation.

B. Baseline Models

When being evaluated on BIB, a model cannot actively
sample from the environment; it can only use the samples
provided in the dataset. We therefore did not test baseline
models using traditional approaches in imitation learning
(IL), inverse RL (IRL), and RL [32, 1, 56] because they
require substantial privileged information such as access to

(a) Single object (b) Preference (c) Instrumental action

(d) Multi-agent

Fig. 6: The four tasks from the background training set. Only the test trials
are shown here.

the environment to actively sample trajectories using the
modelled policy and an observable reward for RL algorithms.
Moreover, these approaches often model one agent at a time,
and BIB requires the same model to infer the behavior of
different agents across different episodes (although recent
approaches in deep RL and IRL try to mitigate this latter
issue with work in meta-RL and meta-IRL [54, 55, 36]
that allows for similar cross-episode adaptation). Although
this feature of BIB makes it less suitable for testing RL
models, it is essential to BIB’s design because it reflects
infants’ understanding and reasoning. Infants rely on little
to no active interaction with a particular environment to
make meaningful inferences and predictions about the agents
in that environment, and infants’ inferences are far more
abstract than their particular observed or active experience
[45, 16, 28, 57].

We thus tested two baseline models including video
modeling and behavior cloning (BC). Models were trained
passively and through observation only. Our baseline models
either predict the next frame in the video (see Figure 7 for
architecture) or the actions taken by the agent. To encode
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the context in the form of the familiarization trials, we use a
sequence of frames (for the video model) and frame-action
pairs (for the BC models). In terms of the architecture,
the baseline models take inspiration from a state-of-the-art,
neural-network-based approach to encode the characteristic
of an agent: the theory of mind net (ToMnet) model in
Rabinowitz et al. (2018) [34]. We encode the familiarization
trials as context either using a bidirectional LSTM or an
MLP. In addition to video modeling and BC, we also try an
offline-RL baseline [44].

Fig. 7: Architecture of the video baseline model inspired by Rabinowitz
et al. (2018) [34]. An agent-characteristic embedding is inferred from the
familiarization trials using a recurrent net. This embedding, with the state
at test time, is used to predict the next frame of the video using a U-Net
[39].

C. Results

The models with an RNN perform at chance on the
Preference Task (see Figure 8a for predictions made by the
video model); they tend to predict that an agent will go
to the closer object (this prediction is made in about 70%
of trials). The model thus neglects the agent’s preference
established during familiarization. This is striking because
the model does take into account the familiarization phase
when succeeding in the No-Navigation Preference Task in
the background training. This difference could result from
differences in the distance at which the objects are placed
in the scene. In the background training, the objects are
close to the agent, and familiarization trial lengths are short.
The characteristic encoder RNN might find it difficult to
generalize to the longer sequences seen in the evaluation
tasks. The BC-MLP model is confused by how the object
locations correlate with their identity, encoding an agent’s
preference for location instead of objects. This is surprising

Input Frame Model Prediction Target Frame

(a) The model predicts that the brown agent will go to the green object instead of the
grey object, its preferred object goal during familiarization.

Input Frame Model Prediction Target Frame

(b) The model predicts that the blue agent will move to the inaccessible cyan object
instead of an accessible object.

Input Frame Model Prediction Target Frame

(c) The model predicts that the blue agent will directly go to the inaccessible orange
object instead of performing the instrumental action to first collect the triangular key.

Fig. 8: The most surprising frame (the frame with the highest prediction
error) from the test trial for the video model taken from the evaluation
tasks. Failure cases are shown here.

as the background training provides evidence that agents
prefer object identities, not specific locations.

The models also fail on the Multi-Agent Task, again
tending to predict that an agent will go to the closer object
regardless of any established preferences. Consistent with
this failure, the models also fail to map specific preferences
to specific agents. The models do slightly better than chance
on the Inaccessible Goal Task. As seen in Figure 8b, the
video model still, nevertheless, frequently predicts that the
agent will go to the inaccessible goal. The models are profi-
cient at finding the shortest path to the goal in the Efficiency
Task (appendix Figure 16a), leading to high accuracy on both
sub-evaluations that test for efficient action: Path Control and
Time Control (Table I). However, the RNN-based-models fail
to modulate their predictions based on whether the agent
was rational or irrational during familiarization (Table I). In
contrast, BC-MLP has a weaker expectation of rationality
from an irrational agent, scoring 73.4% on this task. Finally,
the models perform above chance on the Instrumental Action
Task, but performance on the sub-evaluations (Table I) indi-
cate that they rely on the simple heuristic of directly going
to the goal object rather than understanding the nature of the
instrumental action (Figure 8c). This leads to higher scores
on sub-evaluations with no barrier and an inconsequential
barrier (Table I) but lower ones on the sub-evaluation with
a blocking barrier. This poor performance may be due to
the difference between the agent and barrier conditions in
the background training (where the agent is confined; Figure
6c) and evaluation (where the object is confined; Figure 4).
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IV. PILOT VALIDATION OF BIB WITH 11-MONTH-OLD
INFANTS

BIB is rooted in the findings and methods of develop-
mental cognitive science, but there are still critical differ-
ences between its stimuli and the stimuli used with infants
in past research. In addition to allowing for allowing for
the direct comparison of machine and human performance,
validating BIB with infants addresses new questions about
agency-reasoning in infancy. For example: Can infants reason
about agents’ actions when viewing them from an overhead
perspective; can infants recognize simple shapes with simple
movements and minimal cues to animacy as agents with
intentionality; can infants predict an agent’s goal-directed
navigation when the location of a preferred object varies
greatly during a familiarization phase; and can infants expect
agents to move towards a nonpreferred object, versus not
move at all, when a preferred object is inaccessible?

In our pilot validation, we focused on two of BIB’s
subtasks: the Preference Task and the Efficiency Task. We
focused on these tasks both because there is a rich literature
suggesting infants’ success on similar tasks [3, 15] and also
because state-of-the-art computational models do not show
rich, infant-like agency reasoning on these tasks. This pilot
is a first step towards a a comprehensive evaluation of all
the BIB tasks with infants.

A. Participants and Methods.

Twenty-six 11-month-old infants (12 = female, Mage =
11.12 months, SD = 0.38) were tested on both the Preference
and the Efficiency Tasks with half of the infants receiving
each task first. Two infants completed only the Preference
Task, and two infants completed only the Efficiency Task,
leading to the total of 24 infants per task. Infants were
tested online using the Zoom teleconferencing system, and
they sat on their parents’ laps or in highchairs facing the
computer screen. An experimenter, naı̈ve to when the test
trials were presented and to the order of the test trial out-
comes, live-coded infants’ looking times using the PyHab-
online software [25]. PyHab-online was set up to control the
presentation directly from a parent’s browser via slides.com.
The stimuli were the videos chosen directly from the large
set of videos used to evaluate the baseline models, but
they were presented at a slower pace, more appropriate for
infant viewing. Expected and unexpected outcomes were also
presented sequentially after the eight familiarization trials.
Each trial lasted for a maximum of 60 seconds and was
introduced by a five-second ”attention grabber” (a swirling
colorful blob accompanied by a chiming sound) to focus
infants’ looking to the screen. The video froze after the agent
reached an object, and the last frame remained on the screen
until infants looked away for two consecutive seconds or for
the total duration of the trial (i.e., 60 seconds). Which of
the two objects the agent preferred in the Preference Task as
well as the order of the test trial outcomes in both tasks was
counterbalanced across infants. Figure 9 shows stills from an
infant’s testing session.

B. Results.

TABLE II: Infants’ mean looking times on the Preference and the Efficiency
Tasks

Preference Task Efficiency Task

expected unexpected expected unexpected

Valid 24 24 24 24
Missing 2 2 2 2
Mean 5.260 8.503 7.964 12.470
Std. Error of Mean 0.677 1.402 1.083 1.709

Infants’ raw looking times to the test trials on the Pref-
erence and Efficiency Tasks are summarized in Appendix,
Table II. The main analysis used one linear mixed effects
model for each task with Expectancy (expected vs. unex-
pected) as a fixed effect factor and Participant as a random
effects intercept. Looking time was counted from the start
of the video.4 Our analysis revealed that infants looked
longer to the unexpected test trials in both the Preference
Task (β = 3.24, p = .040) and the Efficiency Task (β =
4.50, p = .016)(see Figure 10). We also analyzed infants’
raw looking times using a linear mixed effects model with
Task (Preference vs. Efficiency) and Expectancy (expected
vs. unexpected) as fixed effect factors and Participant as a
random effects intercept. This analysis revealed longer look-
ing at the unexpected vs. expected outcomes (β = 4.506, p =
.007), longer looking to the Efficiency vs. Preference Task
(β = −2.934, p = .07; likely because the action sequences
were longer in the Efficiency Task), and critically, no inter-
action between Task and Expectancy (β =−1.263, p= .585).
These results suggest that infants succeed on the very same
highly abstract agency-reasoning tasks that state-of-the-art
computational models fail on.

V. DISCUSSION

In this paper we introduced the Baby Intuitions Benchmark
(BIB), which tests machines on their ability to reason about
the underlying intentionality of other agents by observing
only agents’ actions. BIB is directly inspired by the
abstract reasoning about agents that emerges early in human
development, as revealed by behavioral studies with infants.
BIB’s adoption of the VOE paradigm, moreover, means its
results can be interpreted in terms of human performance and
makes it appropriate for direct validation with human infants.

4Because we included only the path-matched version of the Efficiency
Task, where the length of the action sequence in the unexpected outcome
was longer than in the expected outcome, and because there was some
variation in the length of the action sequence in the two outcomes of the
Preference Task, we also analyzed infants’ looking times from the end of
the video. This analysis revealed the same pattern of looking as in the main
analysis, but the effect was weaker: Preference Task (β = 2.19, p = .090,
Mexpected = 2.91, SE = 0.65, Munexpected = 5.10, SE = 1.08); Efficiency
Task (β = 2.30, p = .159, Mexpected = 4.43, SE = 1.07, Munexpected =
6.73, SE = 1.42). That said, looking time using this metric was much
lower overall, and this metric could not capture infants’ surprise at an
agent’s unexpected behavior occurring during the video (e.g., the agent’s
movement indicated a path towards an nonpreferred object very soon after
that movement started). In the final version of this task, we will thus equate
the length of all test trials within the same task.
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Fig. 9: The right panel shows a participant looking at the stimuli during the testing session. The left panel shows how the stimuli displayed on the
participant’s screen ((A) Unexpected outcome, Efficiency task and (B) Expected outcome, Efficiency task.

(a) Preference (b) Efficiency

Fig. 10: Box-plots of infants’ looking time (in seconds) towards the expected and the unexpected outcome in (a) the Preference task and b) the Efficiency
task. The horizontal lines indicate medians. Black points, connected by gray lines across boxes indicate looking time for individual participants.

While baseline, deep-learning models successfully
generalize to BIB’s training tasks, they fail to systematically
generalize to the evaluation tasks even though the models
incorporate theory-of-mind-inspired architectures [34]. In
particular, the baseline models performed at about chance
when required to reason that agents have preferred goal
objects, that preferences are tied to specific agents, and that
goal objects can be physically inaccessible. When presented
with instrumental actions, moreover, the models succeeded
only by relying on a simple heuristic of going directly
to the goal object, rather than on a more sophisticated
understanding of an agent’s sequence of actions. Finally,
the models failed to modulate their predictions about
efficient action for irrational versus rational agents. These
results suggest that state-of-the-art AI models do not have
a common-sense understanding of agents the way human
infants do.

Our pilot validation of BIB with 11-month-old infants
both provides additional support for this suggestion and also
provides new insight into the abstractness and generalizabil-

ity of infants’ knowledge. While studies with infants have
relied on both simple and complex visual displays, they
have not relied on one comprehensive battery with agents’
intentionality conveyed at a high level of abstraction, as in the
seminal Heider & Simmel (1944) [21] displays, which adults
find very compelling. Moreover, infants’ preliminary success
on BIB informs our understanding of the generlizability of
infant’s knowledge. For example, infants in BIB’s Preference
Task successfully predicted an agent’s goal-directed naviga-
tion when the location of the agent’s preferred object varied
greatly during familiarization.

The pilot validation with infants presented here converges
with the main findings from conceptually and methodolog-
ically similar experiments from developmental psychology
[19, 51, 52]. In future work, we plan to test infants on all
of the BIB tasks, which would provide a comprehensive
validation of the benchmark and a stronger case for the
conclusion that state-of-the-art machine learning models are
fundamentally different from human infants in their reason-
ing about agents.

The origins and development of human, intuitive
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understanding of agents and their intentional actions have
been studied extensively in developmental cognitive science.
The representations and computations underlying such
understanding, however, are not yet understood. BIB serves
as a test for computational models with different priors
and learning-based approaches to achieve the common-
sense reasoning about agents that human infants have.
A computational description of how we reason about
agents could ultimately help us build machines that better
understand us and that we better understand.
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PMLR, 10–15 Jul 2018, pp. 4218–4227. [Online]. Available:
http://proceedings.mlr.press/v80/rabinowitz18a.html

[35] R. Raileanu, E. Denton, A. Szlam, and R. Fergus, “Modeling others
using oneself in multi-agent reinforcement learning,” arXiv preprint
arXiv:1802.09640, 2018.

[36] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in International conference on machine learning. PMLR, 2019, pp.
5331–5340.

[37] B. M. Repacholi and A. Gopnik, “Early reasoning about desires:
evidence from 14-and 18-month-olds.” Developmental psychology,
vol. 33, no. 1, p. 12, 1997.

[38] R. Riochet, M. Y. Castro, M. Bernard, A. Lerer, R. Fergus,
V. Izard, and E. Dupoux, “Intphys: A framework and benchmark for
visual intuitive physics reasoning,” CoRR, vol. abs/1803.07616, 2018.
[Online]. Available: http://arxiv.org/abs/1803.07616

[39] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[40] R. Saxe, T. Tzelnic, and S. Carey, “Knowing who dunnit: Infants iden-
tify the causal agent in an unseen causal interaction.” Developmental
psychology, vol. 43, no. 1, p. 149, 2007.
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