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Abstract— Robots are envisioned to work alongside humans
in applications ranging from in-home assistance to collaborative
manufacturing. Research on human-robot collaboration (HRC)
has helped develop various aspects of social intelligence neces-
sary for robots to participate in effective, fluid collaborations
with humans. However, HRC research has focused on dyadic,
structured, and minimal collaborations between humans and
robots that may not fully represent the large scale and emergent
nature of more complex, unstructured collaborative activities.
Thus, there remains a need for shared testbeds, datasets,
and evaluation metrics that researchers can use to better
model natural, ad-hoc human collaborative behaviors and
develop robot capabilities intended for large scale emergent
collaborations. We present one such shared resource—FACT
(Full-body Ad-hoc Collaboration Testbed), an openly accessible
testbed for researchers to obtain an expansive view of the
individual and team-based behaviors involved in complex, co-
located teamwork. We detail observations from a preliminary
exploration with teams of various sizes and discuss potential
research questions that may be investigated using the testbed.
Our goal is for FACT to be an initial resource that supports a
more holistic investigation of human-robot collaboration.

I. INTRODUCTION

Collaboration is a fundamental process that enables hu-
mans to perform various complex activities. For example,
in professional automobile racing, pit crews swiftly replace
tires, refuel, and carry out necessary repairs and adjustments
within highly limited time spans; surgeons, nurses, anes-
thetists, and assistants work together seamlessly to perform
surgeries; and firefighters respond collectively to a wide
range of emergencies and catastrophes. Beyond professional
endeavors, day-to-day interactions also frequently involve
people working together, such as when people coordinate
actions and distribute efforts while assembling furniture.

In many of these instances, collaboration emerges on an
ad-hoc basis, with teammates communicating and determin-
ing task roles and actions spontaneously. This emergent
collaboration allows humans to effectively initiate and shape
team-based behaviors according to their real-time task needs.
Achieving similar emergent collaboration in human-robot
teaming and interaction is critical for applications such as
in-home assistance, flexible manufacturing, and search-and-
rescue, where collaborative actions require high adaptability.
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Fig. 1. FACT (Full-body Ad-hoc Collaboration Testbed) enables investi-
gation of emergent collaborative behaviors in complex assembly, such as
dynamic sub-team formation.

However, much of the prior work on human-robot collabora-
tion has focused on prescribed scenarios where collaborators
have predefined, static roles and on dyadic human-robot
collaborations in tabletop settings (e.g., [1], [2], [3], [4],
[5]). Furthermore, the task scenarios used in HRC research
often involve minimal collaborative activity, such as hand-
offs from robots to humans, providing a limited view of how
collaboration may need to evolve in larger scale interactions.

Moving towards developing shared testbeds, datasets, and
evaluation metrics focused on large scale, emergent human-
robot collaboration can help drive HRC research towards
investigating the more unstructured, ad-hoc, and involved
collaborative activities that have so far remained largely
unexplored. In this work, we present Full-body Ad-hoc
Collaboration Testbed (FACT), a testbed that researchers can
use to understand human behaviors in emergent collaboration
and develop robot capabilities based on these behaviors.
We provide implementation details to enable researchers to
recreate FACT, describe observations from a preliminary
exploration using the testbed, and discuss future steps to
further drive research into developing flexible, emergent
human-robot collaborations.

II. FACT: FULL-BODY AD-HOC COLLABORATION
TESTBED

We developed FACT as a testbed focused on a collabora-
tive assembly scenario where teammates construct a “bunk
bed” using PVC pipes (Fig. 1). The bunk bed structure
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Fig. 2. FACT includes a PVC bunk bed consisting of variously sized pipes and connectors of different forms (left) and a mobile data collection backpack
with first-person sensors that can capture dynamic, egocentric views during collaborative assembly (middle). Our preliminary exploration using the testbed
involved teams of various sizes, which allowed us to observe how team size can enhance task efficiency through mechanisms such as collaborative
parallelism (right).

is 8 ft. by 4.5 ft., is 6 ft. tall, and consists of pipes
and connectors of different sizes and forms (Fig. 2, left).
The bunk bed’s structure opens multiple possibilities in
terms of sequencing steps and assigning collaborative roles
during assembly, which enables the study of unstructured,
emergent collaborative behaviors. Due to the bed’s size, its
assembly can involve bigger teams of people compared to
the pairwise collaborations conventionally examined in HRC
research. It involves natural opportunities for participants
to work together (e.g., moving a long pipe) and offers
opportunities to engage in collaborative parallelism, wherein
team members work on sub-tasks that can be executed in
parallel to complete a joint task. Furthermore, its size and
form allow researchers to capture rich interaction dynamics
in full-body collaboration. We note that the bunk bed affords
natural cooperative activities, contrasting with experimental
task scenarios used in prior relevant research, which either
did not necessarily require collaboration (i.e., the task could
be easily completed by one person) (e.g., [6]) or used small
scale tabletop tasks focused on cognitive collaboration in lieu
of full-body collaboration (e.g., [7]).

To facilitate exploration of the cues and user behaviors
involved in our collaborative assembly scenario, we include
a mobile data collection backpack in FACT (Fig. 2, middle)1.
The backpack consists of a Nvidia Jetson TX2, a battery, and
sensors, including a head-mounted camera, a chest-mounted
camera, and a Myo EMG sensor. The backpack can be
easily extended to work with additional or different sensors
as needed. We run ROS on the Jetson TX2 to collect and
synchronize sensor data. This backpack enables capture of
egocentric views, which prior work has suggested can enable
user-friendly human-robot collaborative assembly that better
reflects user preferences [8], and dynamic information on
collaboration as participants move around and work together
during a task. In addition, we include three stationary video
recorders to capture the process of collaboration.

1The software and parts list for FACT are available at
https://github.com/intuitivecomputing/FACT.

III. PRELIMINARY EXPLORATION OF FULL-BODY
AD-HOC COLLABORATION

To date, we have conducted a preliminary exploration of
large scale emergent collaboration using FACT. Study par-
ticipants were provided with an illustration of the assembled
bunk bed (Fig. 2, left), which was projected on a wall so
that they could easily access and refer to it. Furthermore, the
bunk bed parts were freely available in a central location in
the task environment such that participants could determine
how they wanted to manage and allocate the parts among
team members. As a result, participants were free to choose
how to assemble the structure, allowing us to study emergent
collaboration (e.g., how participants agreed on assembly
order and on who did what). Our preliminary exploration
thus far has involved three one-person teams, two two-
person teams, one three-person team, and one four-person
team completing the experimental task (Fig. 3). Below, we
highlight key observations from our exploration.

• Collaborative parallelism. One common theme we
observed was that participants worked in parallel on
different aspects of the task. Parallelism was observed
in two-person, three-person, and four-person collabo-
rations. Moreover, a larger team (more than two peo-
ple) tended to break into two-person sub-teams, which
seemed to be a basic unit of collaboration (Fig. 3).
Sub-teams were dynamic and fluid, as the teaming was
reconfigured from time to time.

• Direct and indirect requests for help. A common
trigger for sub-team formations was explicit or im-
plicit requests for help. Participants used explicit verbal
requests, such as “Can you pass me that connecting
joint?”, or implicitly signaled the need for help through
inadequate task performance (Fig. 1, 1 & 2).

• Multimodal communication. Participants naturally
employed multimodal behaviors (e.g., gaze cues, gestu-
ral illustration, and verbal requests) when communicat-
ing and coordinating with each other. This observation
was in line with the body of literature on multimodal
communication in human interaction [9], [10]. Mul-
timodal behaviors served as communicative vehicles



Collaborative ParallelismTwo-Person Teaming

Team Size = 3 Team Size = 4

One-Person Task Performance

Fig. 3. We observed different behaviors and strategies corresponding to different team sizes. One-person task performance often involved difficulties,
especially when handling bigger parts (top), whereas multi-person team performance minimized such difficulties through teaming and collaborative
parallelism (bottom).

that allowed team members to synchronize their mental
models of a task, facilitating effective teamwork.

• Benefits of teamwork. We observed various difficulties
that participants faced in the one-person task perfor-
mance compared to the collaborative task performance
(Fig. 3, top). Additionally, our preliminary data indi-
cated that teamwork improved task efficiency (Fig. 2,
right). Team members were able to complement each
other’s actions and regularly participated in collabora-
tive parallelism to speed up the assembly progress.

• Flexible task plan. There were many viable plans
of execution (e.g., different assembly sequences) to
assemble the bunk bed structure. We observed that
participants did not develop and commit to a rigid
plan of execution in detail before carrying out the
task; instead, they maintained a flexible, approximate
task plan and collaboratively determined immediate next
steps by communicating as the task unfolded. This
observation mirrored previous findings indicating that
flexibility is key to efficient human teamwork, which
benefits from quick adaptation and error recovery [11].

• Distributed planning. We also observed that teams
relied on distributed, rather than centralized, planning
in emergent teamwork. In particular, there was no
single leader commanding the team, and task planning
happened throughout the course of assembly without
team members committing to a specific, rigid task plan.
Furthermore, the teams’ plans were not necessarily the
optimal task plan in terms of assembly sequence and
task parallelism. In other words, while participants’ task
plans may be locally optimal in terms of immediate
collaborative outcomes, they are not always globally
optimal in the context of overall task performance
metrics such as efficiency.

• Error handling. Errors are common in complex col-

laborations. We observed two kinds of errors: 1) incor-
rect task assembly (e.g., using the wrong pieces) and
2) communication breakdowns (e.g., misunderstanding
which piece was requested by a partner). Participants
mitigated (e.g., apologizing or laughing after an error)
and repaired (e.g., disassembling and reassembling or
resynchronizing mental models through consultation
with teammates) errors to ensure the success of the task.

• Team dynamics. We observed—especially in two-
person teams—that some participants would take on a
leadership role, giving more direct commands, while
others acted as more passive partners during the collabo-
ration. Additionally, we found that participants engaged
in both functional (task-relevant) and social (e.g., mak-
ing jokes) communication. While it may not contribute
directly to task completion, social communication is
crucial to team harmony [12].

These observations lay the foundation for investigating
complex human-robot emergent collaboration. For example,
they pave the way for further investigation into the following
research questions.

• Synchronization of mental models. When and how
do team members synchronize their mental models of
the joint task as the emergent collaboration unfolds?
Are there differences in the way people perform intra-
and inter- sub-team synchronization and coordination?
How may members collectively commit to an execution
plan through multimodal communication? Answers to
these questions will help inform the development of
computational representations and methods needed to
enable grounded large scale human-robot collaboration.

• Collaboration through parallelism and task assis-
tance. How should robot partners productively partic-
ipate in emergent collaboration? When should a robot
assist its human partners, and when should it work on



parallel tasks? When and how do people form and leave
sub-teams? Is sub-team formation based on teammates’
proximity to the task area or other factors such as task
needs and teaming history? An effective robot will need
to act at appropriate times to dynamically pair with
different partners when needed and depart from sub-
teams to make progress on its individual sub-task.

• Error identification, mitigation, and recovery. How
can a robot recognize and prevent its task errors? How
do team members identify communication breakdowns?
How can a robot identify when it is unable to recover
from errors and requires human assistance? How do
team dynamics influence error recovery? Although prior
work has explored how multimodal human responses to
robot actions may be indicative of robot errors and their
severity [13], further research is needed to investigate
when and how a robot should ask for help, as well as
how to foster positive team dynamics to minimize task
errors and communication breakdowns.

IV. DISCUSSION

To achieve the full potential of human-robot teaming in a
wider range of activities, HRC research must move beyond
small scale, static collaborations to focus on large scale,
dynamic collaborations. Shared testbeds, datasets, and evalu-
ation metrics derived from large scale emergent collaboration
scenarios can help researchers methodically implement and
evaluate the robot behaviors needed to achieve complex, ad-
hoc human-robot collaborations. In this work, we presented
FACT (Full-body Ad-hoc Collaboration Testbed), which con-
sists of a PVC bunk bed collaborative assembly scenario and
an accompanying mobile data collection setup for researchers
to better understand and model individual and team behaviors
during emergent collaboration and to develop and evaluate
collaborative robot capabilities.

Unlike previous testbeds and datasets for modeling human-
human interaction (e.g., [14], [15], [16], [17]), our testbed
enables the capture of natural interactions that do not require
participants to role-play or act in specific collaborative roles,
allows modeling of bigger team behaviors beyond dyadic
interactions, and involves full-body collaborations that move
beyond tabletop settings. Furthermore, while human-robot
interaction researchers have explored various aspects of
social intelligence for HRC, such as multimodal understand-
ing (e.g., [18], [19]), action coordination (e.g., [20]), task
parallelism (e.g., [21]), moderation of team dynamics (e.g.,
[22], [23]), flexible task planning (e.g., [5]), and action
anticipation (e.g., [24]), our testbed allows for a more holistic
investigation into how an interplay of these various aspects
contributes to large scale emergent collaborations and may
also provide insight into designing interaction conventions
for complex emergent collaboration (e.g., [25]).

We contribute an openly accessible testbed for investi-
gating large scale emergent collaboration in this work. Our
future work will involve the development of a shared dataset
from collaborations using FACT, which will include full-
body and egocentric manipulation data, similar to [26] but

focused on team-based collaborative activity rather than on
one-person task performance. We would also like to add to
the existing set of established evaluation metrics for human-
robot collaboration (e.g., [27]) to capture aspects of human-
robot interaction specific to large scale emergent collabo-
ration, such as dynamic sub-team formation. To minimize
the influence of limited manipulation and motion capabilities
of real-word robots on research on emergent collaboration,
we would also like to develop a simulation counterpart to
FACT that enables researchers to deploy and test behaviors
on virtual AI agents in the bunk bed assembly scenario.
Overall, we hope that FACT can serve as an initial tool
that encourages the development of additional resources and
research directions that can advance investigation of social
intelligence for large scale emergent collaboration.
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