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Abstract— Humans increasingly collaborate with AI systems
to make complex decisions in the real world. While a lot of
work is being done to make more accurate and interpretable
AI, little is known about when and how humans decide to look
towards AI assistants for help. To address this gap, we develop
metacognitive bandits: a computational model of a human’s
advice-seeking behavior when working with an AI. The model
describes a human’s metacognitive process of deciding when to
rely on their own judgment and when to solicit the advice of the
AI based on their assessment of the utility of the AI’s advice.
It also accounts for the difficulty of each trial in making the
decision to solicit advice. We illustrate that the metacognitive
bandit makes decisions that are qualitatively similar to humans
in a behavioral experiment.

INTRODUCTION

Human decision-makers are increasingly reliant on AI
assistance in domains that were previously thought to be
exclusively dependent on human subjectivity and expertise
[1], [2]. A common pitfall of such hybrid human-AI decision
making is the ineffective treatment of advice from an AI
agent by the human. To correctly assess and use an AI
agent’s advice, the human must infer the agent’s expertise
and knowledge about the task at hand, i.e, the human must
employ machine theory of mind to build a mental model of
the AI’s ability. In this paper, we present a cognitive science
perspective on how humans infer an AI agent’s ability and
use this inference to guide their decision to solicit the AI’s
advice as opposed to relying on their own judgement.

Resistance to outside advice is not unique to human-AI
teams: humans discount advice from peers and tend to rely
on their own judgment, even when that judgment is from an
expert [3]. Humans also exhibit excessive and unwarranted
confidence in their own judgments relative to those of their
peers [4]. Recent work suggests that a number of similar
behaviors might be at play when humans collaborate with
AI which can lead to sub-optimal outcomes [5]–[7].

The human-machine interaction literature reports two con-
trasting biases that humans are susceptible to when working
with AI: algorithm appreciation and algorithm aversion.
Algorithm appreciation is the tendency of a human to prefer
algorithmic help over another human’s help [6]. In contrast,
algorithm aversion has been described as the tendency of a
human to disregard the recommendations of a machine after
observing that it made a mistake. This can occur even when
the algorithm can be beneficial to the human decision maker
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on average [7]. Human behavior consistent with these biases
is often reported as inappropriate reliance by the human on
the AI.

In this paper, we present a cognitive model for human-
AI collaboration: we argue that varying degree of reliance
on AI is a consequence of quasi-optimal decision-making
on the part of the human. The human’s decision to ask
for help can be thought of as a metacognitive exercise
- the human reflects on their own knowledge relative to
the AI to make a decision on whether to seek help or
not. This decision to ask for help can be formulated as
a combination of two cognitive processes: explore/exploit
sequential decision-making and metacognition. We start with
an assumption that humans behave like quasi-ideal observers,
performing Bayesian inference to decide when to ask for AI
assistance. We posit that humans engage metacognition to
infer and compare the utility of making one’s own decision
with the utility of seeking the advice of an AI. This relative
assessment guides the decision to seek advice of the AI
or rely on their own judgement. We model the sequential
decision-making problem of soliciting advice on each trial
as an explore/exploit problem. The human can explore by
choosing to solicit the advice of the AI. This action is
risky, since the AI has an unknown capability and the action
to solicit advice is associated with time costs associated
with soliciting, processing, and integrating the advice with
one’s own judgment. The decision to seek advice pays off
if the utility of AI advice exceeds the utility of making
an independent decision. The AI’s expertise can only be
inferred by soliciting its advice. The human can exploit by
choosing to go ahead with an independent judgment. This
choice is less risky when confidence in one’s decision is high.
However, when the AI’s advice is not solicited, the human
doesn’t learn about the AI’s ability. To appropriately judge
relative expertise, it is necessary for the human to solicit the
AI’s help and make a mental model of the AI’s ability.

COMPUTATIONAL MODEL: METACOGNITIVE BANDIT

The computational problem associated with the decision
to solicit advice is an optimal exploration effort: Humans
infer the relative utility of relying on themselves or the
AI assistant to inform future decisions of when to seek
help. This process be can be elegantly captured using the
bandit framework. Bandit problems are widely used to study
sequential decision-making when there is uncertainty about
the rewards associated with decisions (or arms). In a machine
learning context, multi-armed bandits have been used to
efficiently choose between different sources of information,
such as crowd workers and/or machine learning models



[8] and active assessment of machine classifiers [9]. In
cognitive science, multi-armed bandits have been used to
model human sequential decision behavior in reward and
information seeking environments [10]–[12]. Decisions made
in bandit problems require a balance between exploring all
available arms and exploiting the best possible arm at any
time.

We specify the decision to seek help from AI as a pull
of one of two arms: self and AI. However, this decision is
a metacognitive one: the human needs to evaluate their own
performance (which will reflect the subjective difficulty of
the current problem) as well as learn about the AI arm’s
utility. This is different from a traditional bandit setting
in which the evaluation of arms corresponds to competing
external events. The decision of arm selection on each trial
is based on on the performance history of both arms (AI and
self). The metacognitive bandit captures the metacognitive
process employed by a human to decide whether to seek AI
help on an individual trial. We hypothesize that the human
infers a utility for soliciting the AI’s help and a utility
for coming up with a solution on their own. We use the
framework of upper confidence bound (UCB) bandit models
to model this process. Specifically, we use a Bayesian UCB
framework [13] as a solution to this metacognitive task. In
this framework, the decision-maker constructs a 100(1−λ)%
credible interval for the expected reward from each action at
each trial and greedily chooses the action with the highest
upper bound of the credible interval. It favors the exploration
of actions with high uncertainty that have the potential to
produce favorable outcomes. In our setting, at each trial t,
the human compares the upper confidence bounds of relying
on their own judgement or relying on the AI and pick the
arm a with the higher inferred utility.

Let θ and φ denote the latent accuracy of the self arm (S)
and the AI arm (AI) respectively. Let xt denote the reward
observed at each trial t for arm S and yt denote the reward
observed at each trial t for arm AI. The reward is 1 when
an arm gives a correct response and 0 when the response
is incorrect. Let at denote the action taken by the human
where at = 1 if the AI was solicited on trial t and at = 0 if
the AI was not solicited (i.e. the self arm was selected). We
assume that the human always observes the reward for the
self arm. However, for the AI arm, the correct and incorrect
responses can only be observed for those trials when the
arm was selected (i.e., at=1). This is an important feature of
our model: the human always learns about their own ability
but only learns about the AI’s ability when the AI’s help is
solicited.

Our model further suggests that humans estimate a prob-
ability of being correct on the current stimulus without the
AI’s aid based on their inferred ability and the subjective
difficulty of the stimulus at trial t. We use the term ‘sub-
jective difficulty’ to draw attention to the possibility that
an objectively easy trial can be perceived as a difficult trial
by a human. This may happen because the human was not
paying attention, or because the human doesn’t have enough
context or prior knowledge about a trial. The human infers a

subjective difficulty for each stimulus presented. Let Ct be
the true coherence level at time t. Perceived coherence ωt
is a sample from a normal distribution centered at Ct and
standard deviation .2. We then impose an inverse transfor-
mation to estimate a subjective difficulty (dt) based on the
true coherence of a trial, dt = k/(ωt+ ε), where ε is a small
value added to the denominator (set to .001 in our simulation)
to avoid numerical issues. k is a proportionality constant
set to .02. This equation gives us a way to estimate trial-
level subjective difficulty for our experiment. The probability
of being correct without the AI’s help as estimated by the
human is based on a Rasch model:

P (xt = 1|θ, dt) =
1

1 + exp(−(θ − dt))
(1)

We use the sigmoid function to transform the value (θ− dt)
to a probability value between 0 and 1. This transformed
density of the the latent ability serves as the distribution
of expected accuracy for the self arm. In this model, the
likelihood of observing a sequence of trial outcomes (i.e.,
runs of successes and failures) is:

p(X = x1:t−1|θ, d1:t−1) =

t−1∏
j=1

exp(xj(θ − dj))
1 + exp(θ − dj) (2)

We assume that the human participant engages in an infer-
ence process about their own overall ability θ. Using Bayes’s
rule, the posterior over θ is:

p(θ|X = x1:t−1, d1:t−1) ∝ p(X1:t−1|θ, d1:t−1)p(θ) (3)

where we assume the prior p(θ) ∼ N(µ, σ2). Since cal-
culating the posterior exactly is intractable, we adopt an
approximate inference technique to simulate the human’s
assessment of their own ability. We implement a Hamiltonian
Monte Carlo algorithm to draw samples from the posterior of
θ. The samples from the posterior are then used in equation
2 to infer the probability of being correct which adjusts for
the difficulty of each particular trial.

As a simplifying assumption, we assume the human’s
inference about the AI’s ability is independent of difficulty
(as the human does not know what the AI finds difficult). The
inference of the AI’s ability is the same as the beta update
in Equation 1.

To allow for some stochasticity in decision making, we
assume that humans employ the Metacognitive bandit to
choose the arm with the highest utility most frequently, but
occasionally deviate from optimal behavior. The softmax
action selection function is widely used to model uncertainty
in human decision-making and gives us an elegant way to
incorporate stochasticity in our model. After the adjustment
for trial difficulty by the human, the probability of choosing
the AI arm is evaluated using the softmax function:

p(at = 1) =
1

1 + exp(−UCB(σ(θt−dt),λ)−(UCB(φt,λ)−c)
τ )

(4)



(a) (b)

Fig. 1: Experimental setup: (a) Kinematograms with vary-
ing difficulties (coherence levels) were used as stimuli. (b)
Sequence of events in the task.

where σ is the sigmoid function. In the model, the human
observes a reward and updates the posterior of the latent
ability θ, and φ for both arms. The subjective difficulty
history d1, ..., dt−1, the current subjective difficulty dt, and
reward history x1, ..., xt−1 for arm S is observed at each
time t. Similarly, reward history y1, ..., yt−1 is observed for
arm AI (for those trials when the advice is solicited). Note
that θ is conditioned on the history of the rewards x1:t−1

accumulated by the human and the associated subjective
difficulties d1:t−1 of the trials, while φ is conditioned only
on the history of the rewards y1:t−1 accumulated by pulling
the AI arm. We also impose a small cost c = 0.1 associated
with the action of soliciting advice.

ILLUSTRATIVE EXAMPLE

To illustrate the metacognitive bandit model’s perfor-
mance, we compare the predictions from the model to data
collected from participants in a behavioral experiment. We
provide a brief description of the sequence of events from
one of a series of experiments on AI advice solicitation.

Participants were first shown a fixation point for 500 ms
followed by a random-dot kinematogram for 500 ms (See
Figure 1a). Participants were tasked with identifying the
dominant direction of movement in the kinematogram (left
or right). The coherence (randomness) of the kinematograms
was randomly sampled from a uniform(−.3, .3) distribution
where negative coherence corresponds to left being the
dominant movement direction of the stimuli. Low absolute
value of coherence corresponds to higher trial difficulty.
The sequence of events in the experiment as shown in
Figure 1(b) were as follows. Participants were shown a
kinematogram and were asked to submit an initial response.
After submitting their response, they were asked to rate
their confidence (low, medium or high) in their decision.

Next, they were given the option to solicit the advice of an
AI agent. If they chose to solicit advice, they were shown
the AI recommendation. If not, they were shown feedback
(correct/incorrect) on their original answer. If they solicited
the AI’s advice, they were allowed to change their answer
after viewing the AI’s recommendation. The AI advice did
not include a confidence rating. AI advice was simulated
by the experimenters such that AI accuracy increased as a
function of coherence. Participants submitted their answer
after taking into account the AI’s advice. This was followed
by feedback (correct/incorrect) on their final response. Note
that a key feature of the experiment is that information about
the AI’s ability is only evident when its advice is solicited.

We focus on four qualitative findings related to partici-
pants’ decision to solicit advice: First, human performance
was on average poorer than that of the AI. Participants were
correct 69% of the time on their first judgment, and the AI
was correct 81% of the time. Therefore, participants are able
to increase average performance by soliciting and adopting
the advice of the AI. Note that both participants and AI
did better on easier trials than harder trials. For example,
for coherence values greater than .16, AI had an accuracy of
93% whereas humans had an accuracy of 78%. For coherence
values less than .16, AI had an accuracy of 69% while
humans had an accuracy of 61%. Second, there was sub-
stantial variation in the degree of soliciting AI advice across
participants and trials. Figure 2(a) show that the tendency
to solicit AI advice decreased over time. In addition, some
individuals stopped soliciting advice after only a few trials,
whereas other individuals kept soliciting advice across the
entire experiment. Third, Figure 4(a) shows that confidence
in the initial decision is related to accuracy, suggesting that
participants have accurate metacognitive awareness of the
difficulty of that particular trial and the associated level of
uncertainty in their decision. Fourth, Figure 4(b) shows that
AI advice was solicited more often when the participant
was less confident. This is another way of saying that
metacognition in this task is accurate — participants are able
to judge the likelihood of answering correctly on a particular
trial.

We simulated the metacognitive bandit by conditioning
on the same true coherence and reward sequence as in
the experimental data. We set λ to .1 such that the UCB
action selection is based on the 90th quantile of the latent
abilities of the two arms. We set c to .1 to impose a small
cost associated with the action of soliciting advice. The
experiment didn’t ask participants for subjective difficulty on
each trial. Instead, we use a noisy transformation of the true
coherence of the stimuli used in the experiment to simulate
subjective difficulty. Let Ct be the true coherence level at
time t. Perceived coherence ωt is a sample from a normal
distribution centered at Ct and standard deviation .2. We then
impose an inverse transformation to the perceived coherence
to estimate a subjective difficulty of a trial, dt = k/(ωt+ ε),
where ε is a small value added to the denominator (set to
.001 in our simulation) to avoid numerical issues. k is a
proportionality constant set to .02. This equation gives us
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Fig. 2: Advice soliciting behavior for actual and simulated
participants on 240 trials. Participants are sorted in increasing
order of proportion of trials on which advice is solicited.
White corresponds to trials where a participant did not solicit
AI advice. (a) Empirical data (b) predictions of metacognitive
bandit model

a way to estimate trial-level subjective difficulty for our
experiment. This is substituted in equation 1 to calculate the
probability of being correct on each trial.

We also use the estimated perceived coherence of a trial
to simulate the response and confidence of the human on
that trial. Figure 3 shows the correspondence between the
coherence value and the confidence of the human. We expect
the human to have high confidence when the absolute value
of coherence is high (between .16 and .3) and the direction of
movement of the stimuli is highly discernible. We expect the
human to have medium confidence when the absolute value
of coherence is between .06 and .16 and low confidence
when the absolute value of coherence is less than .6. If the
human’s perceived coherence has the same sign as the true
coherence, we predict that the human can correctly guess the
dominant direction of movement in the stimulus.

Through simulations, we see that the metacognitive bandit
makes decisions similar to humans in the behavioral exper-
iment, i.e, the model emulates the qualitative trends in the
data. Figure 2(b) shows the advice seeking trend across the
population simulated using the metacognitive bandit model.
We see that the model predicts under reliance by some
participants on AI advice. Figures 4 (a) and (b) also indicates
that the model is able to capture the qualitative relationship
between confidence, accuracy and the probability of seeking
AI advice.

DISCUSSION

To build effective human-AI teams, in addition to using
highly accurate and interpretable algorithms, it is critical
to understand how humans how humans seek and use AI
assistance. In this paper, we focus on understanding the cog-
nitive process that drives a human’s advice seeking behavior
when working with AI. Through metacognitive bandits, we
demonstrate that humans display a range of behaviors when
working with an AI teammate. We show that individual

Fig. 3: Proposed generative model for human response and
confidence: True coherence is sampled from a uniform
distribution between −.3 and .3. Perceived coherence is a
noisy sample from a normal centered at the true coherence
and is used to determine the accuracy and confidence of the
human on a trial.
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Fig. 4: Relationship between the reported confidence of par-
ticipants in their response and (a) the accuracy of response,
and (b) probability of soliciting AI advice.

differences in the reliance on the AI’s advice can be expected
when quasi-optimal decision-making strategies are applied
to limited amounts of data observed from the AI. In the
illustrative example discussed in this paper, we look at a very
specific behavioral paradigm and use simulated AI advice.
An important future direction is to look at more naturalistic
decision-making settings while using a real AI in the loop.
We also do not model how advice is integrated into the final
decision by the human. Understanding how AI advice factors



into human judgment is another direction we plan to pursue.
Currently, our model only qualitatively captures trends in

the data. To get a complete picture, we need to do more
quantitative model fitting. However, we want to highlight
the role that cognitive models can play in building more
useful AI assistants. Cognitive models are tools to under-
stand human intentions and knowledge. Modeling a human’s
understanding of an AI’s ability can guide design of adaptive
AI systems — it can be used to inform decisions about when
and what kind of assistance should be provided to the user.
Understanding how humans acquire machine theory of mind
and using that knowledge to endow AI with a model of the
user is an important step towards building better human-AI
teams. Ultimately, models of human-AI interaction will be
critical for understanding human behavior in hybrid teams
and also for designing AI agents in a way that humans can
use most effectively.
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