Modeling Communication to Coordinate Perspectives in Cooperation

Stephanie Stacy' Chenfei Li'

stephaniestacy @g.ucla.edu

Max Kleiman-Weiner
maxhkw @ gmail.com

! Department of Statistics, UCLA

3 Department of Brain and Cognitive Sciences, MIT

Abstract— Communication is highly overloaded. Despite this,
even young children are good at leveraging context to under-
stand ambiguous signals. We propose a computational account
of overloaded signaling from a shared agency perspective
which we call the Imagined We for Communication. Under
this framework, communication is a way for cooperators to
coordinate their perspectives, allowing them to act together to
achieve shared goals. We assume agents are rational, utility
maximizing cooperators, which puts constraints on how signals
can be sent and interpreted. We implement this model in a set
of simulations which demonstrate this model’s success under
increasing ambiguity as well as increasing layers of reasoning.
Our model is capable of improving performance with deeper
recursive reasoning; however, it outperforms comparison base-
lines at even the shallowest level of reasoning, highlighting how
shared knowledge and cooperative logic can do much of the
heavy-lifting in language.

I. INTRODUCTION

Human communication is highly overloaded, conveying
rich meaning through sparse, ambiguous signals. For ex-
ample: while two people are sitting at a table, one person
exclaims “the glass!” the other instantly moves his glass
away from a precarious spot at the table’s edge. Here,
“glass” is sparse, leaving the listener to reason why the
glass is relevant and how to respond. Additionally, “glass”
is ambiguous, it might refer to the eyeglasses safely resting
on the table in one context, or the request for a refill in the
next. These simple, everyday exchanges involve spontane-
ity and extreme indirectness, highlighting that humans are
intelligent “inference-making machines” [1]. To understand
the meaning of a signal in its full context, humans rely on
their knowledge of the world, observability of the visual
environment, and the (potential) behavior of their partner.

Our work is built on the rich tradition of treating language
acquisition as social cognition [2], [3], [4]. Leveraging these
empirical insights as well as current computational work, we
propose a model capable of cooperative, human-like commu-
nication with three novel properties. (1) Joint reasoning using
a shared “We” perspective for communication. This allows
cooperators to understand signals in terms of what is relevant
to everyone (I'm referring to the glass’s physical instability,
not its shape or content). (2) Joint planning in the physical
and visual environment as a constraint on communication.
Signals are constrained to interpretations that are expected to
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improve We’s utility under the cooperative logic that every-
one is treated as an equal (“glass” is not the one closer to you
— that would be your responsibility to save). (3) Indirectness
of speech, for rich, multi-dimensional inferences. Signals
may tell you what, but can also give information about why
or how. (“glass” is not referring to the identity of the glass,
but an action — save it).

II. COOPERATION UNDER AN IMAGINED WE

We advocate for a shared agency model where cooperators
are committed to achieving joint goals as a collective body
[5]. To model this, it is useful to consider the ideal coopera-
tion model: a single, central “We” with all knowledge, which
directs agents as if they were limbs. There is no need to
communicate as We coordinates agents effortlessly. We can
be formalized as a model of the underlying mind, composed
of a set of mental states — beliefs, desires, and intentions [6].

Theory of Mind (ToM) is a well-studied type of social
reasoning [7], with a powerful computational counterpart
[8], providing a framework to process the mind for rational
action planning and interpretation. Under this framework,
agents aim to maximize their utility according to their mental
states while minimizing costs of acting in the world [9]. This
process can also be reversed to understand others’ actions.
In inverse planning, an observer uses Bayesian inference to
infer the likely mental states that generates observed actions.

While We is a collective body of multiple cooperators,
ToM traditionally models the mind of an individual. To
accommodate, individual ToM has been extended for joint
mental states: joint beliefs (by.), joint desires (d.), and
joint intentions (z,¢) [10], [11]. This allows reasoning about
what we believe, what we want, and what we intend to do:

P(mindwe) = p(bwe)p(dwe)p(iwewwe; dwe) (1)

The problem with a centralized We is that it does not exist
in reality; only You and I exist as individuals. However, We
can be socially real, so long as each individual is imagining
it. To imagine We, each agent tries to imagine how someone
viewing the task from above would coordinate actors, taking
on a “bird’s eye perspective” [4] or “view from nowhere”
[12]. While the aim for each agent is to model the same We
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as the others, each agent may imagine a slightly different
version of We. When these versions of We are synchronized,
agents can coordinate smoothly.

Recent computational successes have shown that shared
agency can help cooperators achieve complex goals without
communication. In a gridworld paradigm, joint reasoning
about high-level cooperation helps constrain joint actions in
low-level coordination to collect joint rewards [10]. Addi-
tionally, in a cooking task, agents use joint reasoning to
coordinate the execution of a high-level recipe step together
[13]. Shared agency also allows agents to bootstrap joint
commitment to one of many goals, even under observation
noise and model uncertainty [14]. In these examples, ob-
served actions serve as feedback that can help align agents’
imagined We mind. In this paper, we call this modeling
perspective the Imagined We (IW) to highlight that We is
not real but instead, individually imagined.

As long as agents are able to synchronize their versions of
the IW mind, shared agency is already a successful frame-
work, even without communication. We take the perspective
that communication is an even more powerful mechanism
for coordinating perspectives. A key contribution of this
work is to model communication as a means to synchronize
perspectives by first building it up from an underlying shared
agency framework. In addition, under this formalization,
synchronization is aided by strong restrictions on what infor-
mation is allowed in the IW: the IW considers only publicly
shared information — also called common ground [15]. As
agents take in new observations individually, communication
can make this private knowledge mutually known.

A. Modeling Language Pragmatics

Here we propose a mechanism for processing language.
Language has been treated as rational and cooperative [16]
where communicators aim to make themselves understood
by speaking truthfully, relevantly, and efficiently. These ideas
have been incorporated into a successful existing probabilis-
tic model of language pragmatics: Rational Speech Acts
(RSA) [17], [18]. Social reasoning under RSA is recursive —
speakers and listeners can model each other, ad infinitum.
Deeper reasoning increases accuracy but at the cost of
efficiency.

At the top level, a communicator aims to describe a refer-
ent or state of the world (state) with vocabulary (signal) that
is true but possibly ambiguous. Signals are produced by a
pragmatic speaker (p,p) through a decision making process.
A signal is chosen based on a noisy utility maximization
(soft-max), where 3 € [0,00) represents the degree of
rationality:

P.,(signal|state) o ePEIU (signal,state)] (2)

RSA is a generalizable model of language production
that provides the structure required to connect ambiguous
language to concrete utilities. In RSA, a signaler’s utility is
evaluated by modeling the pragmatic listener’s (p;,) inter-
pretation of that signal in terms of the states it could refer
to. This requires a simpler, literal speaker (ps;) model:

E[U (signal, state)] = py,(state|signal) 3)
x psi(signal|state)p(state)

In this formulation, “relevance” is determined by the
entire set of features in the environment, both ones the
speaker highlights through language and the less direct ones
that the speaker foregoes. It is not a trivial challenge to
generalize utility, but here, it is ultimately limited to the
ability to understand the referent of a signal as a target
world state. In reality, language is often several degrees more
indirect: communication can be used to explain not only to
referent states (What?) but also social motivations (Why?)
and interactions in the shared environment (How?).

A large part of non-referent context can be captured by
modeling what an intelligent agent wants to do, why they
want to do it, and how to accomplish it. While RSA lan-
guage pragmatics and ToM decision-making in the physical
environment have been formalized individually, they are
rarely modeled in conjunction. The IW for Communication
integrates these two perspectives in a novel way to broaden
context, allowing a signal to be more indirect — interpretable
in terms of the IW’s joint beliefs, social motivations, and
actions.

B. Deriving Signal Utilities from Action Utilities

Here we explore how to formalize the utility of a signal
under the IW. Utilities are measured with respect to a mind
because they are subjective, socially dependent quantities. In
the IW, this utility is in terms of a joint We mind. How can
you derive a utility from the physical environment when the
signal cannot actually change that environment? An action’s
utility is measured by its consequence on the environment, so
what are the direct consequences of a signal? Just as actions
are designed to change the world, signals are designed to
change the mind. If we can predict what consequence a
signal has on our beliefs, desires, and intentions, we can
connect this back to actions produced by rational planning
in traditional ToM which have well defined utilities.

We extend the IW for communication (see Fig. 1) by lever-
aging RSA’s existing framework of cooperative, pragmatic
language and redefining the utility of a signal to rely on
shared agency ToM and interactions in the physical world.
We connect these components by recognizing (1) signals
change each IW, (2) minds produce predictable, rational
joint actions under ToM reasoning, and (3) actions have well
defined expected utilities which can be derived through joint
planning.

Grounding a signal’s value in a task where multiple agents
interact in the environment is an approach that has been
adopted in the Al communities. A signal’s value is derived
from its expected action consequences in a task in Recursive
Mind Models [19] which has been extended to sequential
decision making problems with interactive partially observ-
able Markov decision processes (I-POMDPs) [20]. However,
unlike the IW, I-POMDPs typically maximize an individual,
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Fig. 1: Signals in the IW are processed through the mind
and connected to joint action utilities.

self-interested reward. A cooperative alternative which as-
sumes centralized training but individual observations and
actions at execution is the decentralized POMDP (DEC-
POMDP) [21]. Critically, none of these models deal with the
contextual flexibility of human-like communication. Instead,
signal meanings must be pre-determined through a shared
codebook that maps each signal onto its own thing. These
approaches treat uncertainty in communication as noise in
the signal channel instead of the intrinsic uncertainty of a
signal that maps onto multiple referents.

We have introduced ToM as a model of social cognition,
but it also provides a rich framework for harnessing intuitive
action costs and preference rewards [22], [23], which allows
planning using the physical scene. Computational successes
have emphasized the role of joint utility functions in morality
[24] and team compositions [11]; furthermore, empirical
evidence supports adult cooperators acting according to joint
utilities [25]. Joint utility considerations create a cooperative
logic in communication where agents expect their partners to
act fairly. This constrains a signal’s interpretation to things
easier for the listener to accomplish. Even toddlers can
disambiguate the referent of an ambiguous request for help
through a basic joint utility consideration [3]. In the scenario,
two equivalent objects are equidistant from the toddler but
near and far relative to the signaler. Children retrieve the
far object more often when the signaler has free hands
than in a second condition where their hands are occupied,
demonstrating sensitivity to cooperative logic in requests. We
use a similar joint utility calculus to ground signal utilities
back to action utilities in the ITW.

III. MODELING SIGNALING UNDER THE IMAGINED WE

The IW framework allows us to resolve ambiguity in com-
munication by imposing constraints from a rational utility
maximization under cooperative logic. In this framework,
the meaning of a signal is formally defined as the mind that

generates the signal, the mind that the speaker would like
the IW to have: a target. A signal should convey information
that helps resolve uncertainty about what we believe, want,
or intend to do. Uncertainty can be in any component of the
mind and even generalize to a joint inference over multiple
uncertain components. Here, we focus on uncertainty in goals
for clarity. Thus the speaker rationally selects a potentially
overloaded signal according to the true goal and target of
inference, goal;, not currently shared in the common ground:

P(signal|goal;) o ePELU (signal,goaly)] ())

The utility of a signal is measured by looking at the utility
of the outcome actions, weighted by how often those actions
are expected to occur:

E[U(SZgnala gaalt)] = EP(a|signal) [U(av goalt)] @)

This framework actually serves to coordinate different per-
spectives: (1) A speaker predicts how a signal can change the
IW mind (here, shared goal: goal,.) (2) and evaluates how
good that change is according to their private observations
of goal;. The evaluation of U(a, goal;) includes the cost of
taking a and the reward if a achieves goal.

Action prediction can be further broken down by connect-
ing signals to actions via the mind. First, signals change
the IW mind, making some goals more likely than others.
Second, using the ToM likelihood function for action plan-
ning, we can calculate which actions are rational conditional
on a given joint mind. We assume actions are conditionally
independent from signals given the mind, captured by the
intuition that signals can only influence actions through the
mind:

P(a|signal) = Z P(goale|signal) P(a|goalye) (6)

goalye

Traditional ToM planning yields P(a|goal,.) and
Bayesian inference allows us to measure how observing a
signal will change the distribution of inferred goals. For the
likelihood function we use a measure of consistency (Is this
message truthful given the goal?), similar the literal speaker
from RSA:

P(goalye|signal) < P(signal|goal,,e)P(goalye) — (7)

The IW is a shared agency account of modeling language
that is able to integrate different types of relevance — lan-
guage pragmatics and intuitive utilities — to communicate
rationally under different sources of ambiguity.

IV. SIMULATIONS
A. Task

We test the IW in an gridworld task to demonstrate
its ability to communicate successfully in a visual setting.
This task combines feature overloading, which demands the
language pragmatics studied by Frank & Goodman (2012),



but is enriched by a spatial scene that requires joint planning
similar to the ambiguous helping from Grosse et al. (2010).

In this task, a signaler and a receiver cooperate to reach
a target item in a nearly-fully observable gridworld environ-
ment. The key is the only bit of asymmetry of information
between agents: only the signaler knows which item is the
target. If either agent reaches the target, both receive a
reward (+8); however, each step incurs a shared cost (-1).
We calibrate the reward so that the expected utility of a
signaler acting when it is better to ask for help is around
zero. In play, the signaler acts first — she may walk to and
select an item (incurring the appropriate action cost), send a
signal to her partner (free), or quit the trial (earning a utility
of zero). Each item has two features: shape (circle, triangle,
square) and color (red, green, purple). Signaling is costless
but limited to conveying a single feature, adding ambiguity
and increasing the chance it will refer to more than one item
in the environment. If the first agent sends a signal (or walks
to an incorrect item), the receiver then gets a turn. The trial
ends after the receiver’s turn or the target item is reached,
whichever comes first. Traveling to the wrong goal results
in a negative utility equal to the number of steps taken to
reach that item.

In each trial, the set of shapes in the environment is
randomly sampled and located; one is uniformly sampled
to be the target, varying the optimal action and actor (see
Figure 2). In addition, trials contain a physical barrier near
the receiver which agents must go around to highlight the
importance of joint planning.

Signals:
Green, Red, Purple,
Square, Circle, Triangle

Private Speaker
Knowledge:

Target:

9,
&

Fig. 2: Example trial setup with a barrier near the signaler.

B. Baseline Models

We compare the IW model to two baselines and the central
control optimal solution (CC). The optimal solution from the
joint perspective is calculated with value iteration over the
concatenation of the individual agents’ action spaces. CC
reflects how the two agents would rationally coordinate with
perfect information: the ceiling of achievable utility.

The first baseline is a direct adaptation of RSA which
we call acting RSA (aRSA). In its original formulation,
RSA is intended to be a language only model; however, the
current task involves reasoning about the cost of actions in
the physical world. For this reason, the RSA signaler has

the additional choice of whether they would like to perform
an action, walking to an item instead of sending a signal.
To make a fair comparison between these alternatives, the
original signal utility (from Equation 3) is augmented with
the action utilities associated with particular inferences:

E[U(signal, goalt)] = Z ppi(x|signal)U(a, = z, goal,)
r€items
®)

Assuming a rational receiver, the signaler evaluates the
utility of the receiver traveling to an item (a, = x) via value
iteration and whether z yields a reward (i.e. x = goal;). The
pragmatic speaker takes the soft-max of the utilities of all
signals, actions ending in an item, and quit option. The RSA
receiver remains the same as before. This is different from
the IW’s formulation of utility as it still lacks “jointness”
— that is, action utility helps a signaler decide whether to
communicate or act, but once a signal is sent, the receiver
uses only pragmatic reasoning to decide what that signal
means.

The second baseline model removes the pragmatic com-
ponent of RSA to focus on joint utilities. Joint Utility (JU)
agents use a joint utility calculation to apportion responsi-
bility over items then uniformly send and interpret truthful
signals in terms of the items they have deemed they are
responsible for. The JU speaker takes the soft-max of the
relative utilities of walking to the goal (do), partner walking
to the goal (signal), and quitting. Similarly, a JU receiver,
upon hearing a signal, constrains herself to consistent inter-
pretations, weighing those interpretations according to their
joint utilities.

Regardless of the model, a signaler will not communicate
if it is more rational walk to the goal. To highlight each
model’s use and understanding of communication, all simu-
lation analysis is restricted to the trials where communication
is optimal (i.e. the receiver goes to the target under the CC
model and the achievable utility is greater than zero).

V. SIMULATION 1: AMOUNT OF AMBIGUITY

We demonstrate the IW’s success in this cooperative
communication task, even when signals are overloaded. The
level of ambiguity is manipulated by increasing the number
of potential target items in the environment (2-9 items). At
six or more items, the target is guaranteed to be overloaded;
that is, no matter what signal is chosen, it will be consistent
with at least two items. We compare the utilities achieved
by each model when faced with the exact same scenario.

A. Results

We look at the utilities achieved by each model, measured
as a percent from the maximum possible as ambiguity
increases (see Fig. 3). When compared to always doing it
for yourself (Do For Self Signaler), communication almost
always leads to substantial gains in utility. This advantage
disappears at high levels of ambiguity for the aRSA and JU
models, but not for the IW. Across any number of items in the
environment, the IW outperforms other baselines and only



begins to deviate from the CC model when the uncertainty
is very high. At the highest level of ambiguity (9 items)
the ITW achieves 71.5% (CI: 64.6-78.4%) of the optimal
utility on average, while aRSA achieves 3.7% (CI: 0.5-6.8%)
and JU achieves 19.4% (CI: 4.4-34.4%). This demonstrates
how communication understanding is significantly enhanced
by the integration of both cooperative pragmatics and joint
utility reasoning in this task.
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Fig. 3: Achieved utility (with 95% CI) measured as the
percent from optimal for each model under varying degrees
of ambiguity. N=2000 trials per model. S = 4 for all models.

We make a more fine-grained comparison between models
to understand what contributes to differences in achieved
utilities by breaking down model behaviors. As ambiguity
increases, model behaviors diverge hugely (Fig. 4). The
JU model always communicates (because analysis focuses
on cases where communication is necessary to achieving
the optimal utility). However, as ambiguity increases, this
communication breaks down, and the receiver is increasingly
less likely to correctly interpret the signal. In aRSA, the trend
is dramatically different. Instead of unsuccessful communica-
tion, the signaler decides the uncertainty from the receiver’s
interpretation is too large, leading to an unfavorable expected
signaling utility. By nine items, the aRSA signaler is not
able to successfully communicate at all. The IW is able to
combine these reasoning strategies to perform well across
all levels of ambiguity; there is a much smaller decline in
successful communication when the uncertainty is large. We
see neither the breakdown of communication nor the huge
increases in quitting behavior exhibited by the other models.

VI. SIMULATION 2: LEVEL OF RECURSION

One strength of the IW is that integrating the additional
constraints from cooperative joint planning can often quickly
resolve ambiguity, lessening reliance on deep recursion. This
may provide a novel answer to why everyday pragmatic
language is often quick and easy. Here we demonstrate this
by looking at how performance changes as a function of
deeper reasoning for the IW and aRSA at different levels.

RSA pragmatics involves recursion, which is increasingly
expensive at each additional layer. A speaker starts with a
literal model (level 0), which is used by a listener, which is
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Fig. 4: Breakdown of agent behavior (as a proportion)
for each model under varying levels of ambiguity. The
behaviors are (1) Successful communication: the signaler
communicates and the receiver goes to the correct goal
(2) Unsuccessful communication: the signaler communicates
and the receiver fails to choose the correct goal (3) Signaler
does: the signaler forgoes communication and walks to the
target (4) Quit: the signaler deems the trial too hard and skips
the trial.

then used by a pragmatic speaker (level 1). We can continue
to build additional layers, each being more complex than
the last. The IW can also handle this type of recursion;
however, agents reason recursively about the joint IW mind,
not each other. We compare the utilities achieved by different
reasoning levels of speaker and receiver playing this task.

In the IW, a joint utility calculation determines the portion
of the environment where each agent is responsible for
achieving the target. In addition to recursion levels, we test
two different environmental configurations which change the
joint utility dynamics: barrier near the receiver shown in
Fig. 2 (RB) and barrier near the signaler — the same barrier
moved three grid spaces down (SB). By moving the barrier
closer to the signaler, a larger portion of the environment
becomes the receiver’s responsibility. This increases the
difficulty by making the constraints from joint utility less
likely to be useful for understanding a signal.

A. Results

In general, deeper recursive reasoning leads to an in-
crease in performance. For both models, the most complex
signaler/receiver pair (level-2 signaler, level-2 receiver) per-
forms best regardless of the environment. When comparing
the most complex pair to the simplest (level-1 signaler, level-
0 receiver), the IW achieves an average of 19.3% and 25.4%
boost in performance from recursion in the RB and SB
conditions respectively; aRSA sees a 20.9% and 15.6% bump
in performance. Within a signaler level, as the receiver does
deeper reasoning the achieved utility tends to increase (see
Fig. 5). This indicates that having an intelligent receiver
is important to performing well on the task. Notably, for
both models and environments, the worst performing pair



is a level-2 signaler with a level-0 receiver. This could
indicate that when the speaker expects their receiver to be
reasoning more deeply than they actually are, this mismatch
in expectations can be highly detrimental.

aRSA
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Fig. 5: Mean achieved utility (blue represents higher perfor-
mance) for signaler and receiver pairs with different levels of
reasoning. Shown are N = 500 cases where communication

is optimal per modeling level pair. Number of items is fixed
at 6, = 4.

At the same level of recursion, the IW always outperforms
aRSA (see Fig. 6), achieving up to twice the utility. In fact,
the most complex reasoning under aRSA does worse than
the simplest IW communicator pair. For IW the simplest
reasoning achieves 77.7% (CI: 73.1-82.3%) and 64.0% (CI:
58.8-69.3%) of the optimal achievable utility in the RB and
SB conditions respectively. In contrast, the most complex
communicator pair under aRSA only reaches 50.0% (CI:
44.7-55.3%) and 44.5% (CI: 39.3-49.7%). This large per-
formance difference indicates that the benefits of recursion
are outweighed by the benefits of joint utility reasoning.
Here much of the complex inferential burden of language
can be pushed to a much simpler utility calculus. If these
results align with future empirical behavioral data, it would
provide evidence that everyday language does not need deep
recursion to be sparse and successful.

Finally we can examine the effect of moving the barrier
on performance. From a joint utility perspective, moving
the barrier toward the receiver makes it harder to constrain
the meaning of a signal using joint utility. We find that
performance for a communicator pair is better in the RB
condition than in the SB condition in the IW (adjusted p <
.001 for all communicator pairs) but not in aRSA (adjusted
p > .05 for all communicator pairs), demonstrating the gains
from joint utility reasoning.

VII. CONCLUSION

The IW serves as a general framework of indirect and
ambiguous signal production and understanding under mul-
tiple types of uncertainty. Our proposed modeling approach
emphasizes a shared agency perspective that relies on exist-
ing computational infrastructure which has already success-
fully modeled cooperative coordination. Cooperative logic,
pragmatic language reasoning, and affordable actions under
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Fig. 6: Comparison of IW and aRSA mean achieved utilities
with 95% Cls.

a joint utility calculus constrain a signal’s interpretation.
Integrating these sources of context allow for fast, flexible
signaling which helps remove the inferential burden from
deep recursion. We demonstrate the strength of this modeling
perspective by manipulating the amount of ambiguity in
the environment as well as the depth of reasoning between
interlocutors. By comparing performance of the IW to a set
of baseline models, we demonstrate that the IW representa-
tion is more robust under uncertainty and does not require
deep recursion to perform well — allowing joint utility to do
much of the heavy lifting in language understanding. These
findings support an account of communication that is able
to integrate and process multiple types of relevance for rich
understanding despite sparse, indirect signaling.
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